Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Photoacoustics ; 36: 100584, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38322618

RESUMO

We introduce a physics-based computational reconstruction framework for non-invasive photoacoustic tomography through a thick aberrating layer. Our wave-based approach leverages an analytic formulation of diffraction to beamform a photoacoustic image, when the aberrating layer profile is known. When the profile of the aberrating layer is unknown, the same analytical formulation serves as the basis for an automatic-differentiation regularized optimization algorithm that simultaneously reconstructs both the profile of the aberrating layer and the optically absorbing targets. Results from numerical studies and proof-of-concept experiments show promise for fast beamforming that takes into account diffraction effects occurring in the propagation through thick, highly-aberrating layers.

2.
Sci Rep ; 13(1): 4952, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973284

RESUMO

Non-line-of-sight (NLoS) imaging is an important challenge in many fields ranging from autonomous vehicles and smart cities to defense applications. Several recent works in optics and acoustics tackle the challenge of imaging targets hidden from view (e.g. placed around a corner) by measuring time-of-flight information using active SONAR/LiDAR techniques, effectively mapping the Green functions (impulse responses) from several controlled sources to an array of detectors. Here, leveraging passive correlations-based imaging techniques (also termed 'acoustic daylight imaging'), we study the possibility of acoustic NLoS target localization around a corner without the use of controlled active sources. We demonstrate localization and tracking of a human subject hidden around a corner in a reverberating room using Green functions retrieved from correlations of broadband uncontrolled noise sources recorded by multiple detectors. Our results demonstrate that for NLoS localization controlled active sources can be replaced by passive detectors as long as a sufficiently broadband noise is present in the scene.

3.
Science ; 377(6609): 995-998, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-36007051

RESUMO

One of the key insights of non-Hermitian photonics is that well-established concepts such as the laser can be operated in reverse to realize a coherent perfect absorber (CPA). Although conceptually appealing, such CPAs are limited so far to a single, judiciously shaped wavefront or mode. Here, we demonstrate how this limitation can be overcome by time-reversing a degenerate cavity laser based on a unique cavity that self-images any incident light field onto itself. Placing a weak, critically coupled absorber into this cavity, any incoming wavefront, even a complex and dynamically varying speckle pattern, is absorbed with close to perfect efficiency in a massively parallel interference process. These characteristics open up interesting new possibilities for applications in light harvesting, energy delivery, light control, and imaging.

4.
Phys Rev Lett ; 125(25): 255301, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33416340

RESUMO

We determine the phase diagram of excitons in a symmetric transition-metal dichalcogenide 3-layer heterostructure. First principles calculations reveal interlayer exciton states of a symmetric quadrupole, from which higher energy asymmetric dipole states are composed. We find quantum phase transitions between a repulsive quadrupolar and an attractive staggered dipolar lattice phases, driven by a competition between interactions and single exciton energies. The different internal quantum state of excitons in each phase is a striking example of a system where single-particle and interacting many-body states are coupled.

5.
Opt Express ; 27(23): 33427-33435, 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31878412

RESUMO

We report direct measurements of intrinsic lifetimes of P-type dark-excitons in MoS2 monolayers. Using sub-gap excitation, we demonstrate two-photon excited direct population of P-type dark excitons, observe their scattering to bright states and decay with femtosecond resolution. In contrast to one-photon excitation schemes, non-monotonic density variation in bright exciton population observed under two-photon excitation shows the indirect nature of its population and competing decay pathways. Detailed modeling of different recombination pathways of bright and dark excitons allows experimental measurement of 2P dark → 1S bright exciton scattering rates. These insights into the dark states in a MoS2 monolayer pave the way for novel devices such as quantum memories and computing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...