Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
MAGMA ; 35(6): 875-894, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35471464

RESUMO

This article reviews recent developments in designing and testing new types of materials which can be: (i) placed around the body for in vivo imaging, (ii) be integrated into a conventional RF coil, or (iii) form the resonator itself. These materials can improve the quality of MRI scans for both in vivo and magnetic resonance microscopy applications. The methodological section covers the basic operation and design of two different types of materials, namely high permittivity materials constructed from ceramics and artificial dielectrics/metasurfaces formed by coupled conductive subunits, either in air or surrounded by dielectric material. Applications of high permittivity materials and metasurfaces placed next to the body to neuroimaging and extremity imaging at 7 T, body and neuroimaging at 3 T, and extremity imaging at 1.5 T are shown. Results using ceramic resonators for both high field in vivo imaging and magnetic resonance microscopy are also shown. The development of new materials to improve MR image quality remains an active area of research, but has not yet found significant use in clinical applications. This is mainly due to practical issues such as specific absorption rate modelling, accurate and reproducible placement, and acceptable size/weight of such materials. The most successful area has been simple "dielectric pads" for neuroimaging at 7 T which were initially developed somewhat as a stop-gap while parallel transmit technology was being developed, but have continued to be used at many sites. Some of these issues can potentially be overcome using much lighter metasurfaces and artificial dielectrics, which are just beginning to be assessed.


Assuntos
Imageamento por Ressonância Magnética , Neuroimagem , Imagens de Fantasmas , Imageamento por Ressonância Magnética/métodos , Cerâmica , Espectroscopia de Ressonância Magnética
2.
Sci Rep ; 12(1): 2140, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35136164

RESUMO

Radio frequency identification (RFID) is a mature technology that allows contactless data readout via a wireless communication link. While numerous passive RFID tags are available on the market, accurate alignment between tags and readers is required in a vast majority of cases to mitigate polarization mismatches. We show that enhancing electromagnetic designs with additional mechanical degrees of freedom allows bypassing fundamental limitations and approach ideal performances. Here, we demonstrate a new miniature tag, accessible from any direction and immune to rotations in space. Our tag is made of a high permittivity ceramic resonator, inductively coupled to a metal ring, which contains an RFID chip. The structure is placed inside a spherical plastic holder. In this architecture, the ceramic resonator serves several functions. First, it allows reducing the device footprint without significant bandwidth degradation. Second, it acts as a bob, aligning the electromagnetic structure parallel to the ground, regardless of its initial orientation in space. The bob is designed to slide inside the plastic holder. This roly-poly effect relaxes the constraint on a mutual tag-reader orientation, including the polarization mismatch, and provides next to perfect long-range operation. Being only 55 mm in diameter, our device can be interrogated from a 12 m distance, regardless of the tag's orientation in space. Introducing mechanical degrees of freedom into electromagnetic designs allows obtaining new functionalities, contributing to applications where a mutual orientation between transvers is required.

3.
J Magn Reson ; 320: 106835, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33065392

RESUMO

High-permittivity dielectric pads, i.e., thin, flexible slabs, usually consisting of mixed ceramic powders and liquids, have been previously shown to increase the magnetic field at high and ultra high-fields in regions of low efficiency of transmit coils, thus improving the homogeneity of images. However, their material parameters can change with time, and some materials they contain are bio incompatible. This article presents an alternative approach replacing ceramic mixtures with a low-cost and stable artificial dielectric slab. The latter comprises a stack of capacitive grids realized using multiple printed-circuit boards. Results in this article show that the proposed artificial dielectric structure can obtain the same increase in the local transmit radiofrequency magnetic field distribution in a head phantom at 7 T as the conventional dielectric pad.

4.
Nat Commun ; 11(1): 3840, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32737293

RESUMO

Currently, human magnetic resonance (MR) examinations are becoming highly specialized with a pre-defined and often relatively small target in the body. Conventionally, clinical MR equipment is designed to be universal that compromises its efficiency for small targets. Here, we present a concept for targeted clinical magnetic resonance imaging (MRI), which can be directly integrated into the existing clinical MR systems, and demonstrate its feasibility for breast imaging. The concept comprises spatial redistribution and passive focusing of the radiofrequency magnetic flux with the aid of an artificial resonator to maximize the efficiency of a conventional MR system for the area of interest. The approach offers the prospect of a targeted MRI and brings novel opportunities for high quality specialized MR examinations within any existing MR system.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Cerâmica/efeitos da radiação , Espectroscopia Dielétrica/métodos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Adulto , Cerâmica/química , Espectroscopia Dielétrica/instrumentação , Radiação Eletromagnética , Desenho de Equipamento , Feminino , Voluntários Saudáveis , Humanos , Imageamento por Ressonância Magnética/instrumentação , Imagens de Fantasmas , Razão Sinal-Ruído
5.
Opt Lett ; 44(7): 1694-1697, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30933124

RESUMO

Coupling of electric and magnetic responses of a scatterer, known as bianisotropy, enables rich physics and unique optical phenomena, including asymmetric absorption or reflection, one-way transparency, and photonic topological phases. Here we demonstrate yet another feature stemming from bianisotropic response, namely, polarization-dependent scattering of light by bianisotropic dielectric meta-atom with broken mirror symmetry, which yields a photonic analogue of spin Hall effect. Based on a simple dipole model, we explain the origin of the effect confirming our conclusions by experimental observation of photonic spin Hall effect both for a single meta-atom and for an array of them.

6.
Nat Nanotechnol ; 14(2): 126-130, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30559485

RESUMO

Topological photonics has emerged as a route to robust optical circuitry protected against disorder1,2 and now includes demonstrations such as topologically protected lasing3-5 and single-photon transport6. Recently, nonlinear optical topological structures have attracted special theoretical interest7-11, as they enable tuning of topological properties by a change in the light intensity7,12 and can break optical reciprocity13-15 to realize full topological protection. However, so far, non-reciprocal topological states have only been realized using magneto-optical materials and macroscopic set-ups with external magnets4,16, which is not feasible for nanoscale integration. Here we report the observation of a third-harmonic signal from a topologically non-trivial zigzag array of dielectric nanoparticles and the demonstration of strong enhancement of the nonlinear photon generation at the edge states of the array. The signal enhancement is due to the interaction between the Mie resonances of silicon nanoparticles and the topological localization of the electric field at the edges. The system is also robust against various perturbations and structural defects. Moreover, we show that the interplay between topology, bi-anisotropy and nonlinearity makes parametric photon generation tunable and non-reciprocal. Our study brings nonlinear topological photonics concepts to the realm of nanoscience.

7.
J Magn Reson ; 299: 59-65, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30580045

RESUMO

OBJECTIVE: The purpose of this work is to investigate the use of ceramic materials (based on BaTiO3 with ZrO2 and CeO2-additives) with very high relative permittivity (εr ∼ 4500) to increase the local transmit field and signal-to-noise ratio (SNR) for commercial extremity coils on a clinical 1.5 T MRI system. METHODS: Electromagnetic simulations of transmit efficiency and specific absorption rate (SAR) were performed using four ferroelectric ceramic blocks placed around a cylindrical phantom, as well as placing these ceramics around the wrist of a human body model. Results were compared with experimental scans using the transmit body coil of the 1.5 T MRI system and an eight-element extremity receive array designed for the wrist. SNR measurements were also performed for both phantom and in vivo scans. RESULTS: Electromagnetic simulations and phantom/in vivo experiments showed an increased in the local transmit efficiency from the body coil of ∼20-30%, resulting in an ∼50% lower transmit power level and a significant reduction in local and global SAR throughout the body. For in vivo wrist experiments, the SNR of a commercial eight-channel receive array, integrated over the entire volume, was improved by ∼45% with the ceramic. CONCLUSION: The local transmit efficiency as well as the SNR can be increased for 1.5 T extremity MRI with commercial array coils by using materials with very high permittivity.

8.
Sci Adv ; 4(5): eaap8802, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29756032

RESUMO

Recent advances in condensed matter physics have shown that the spin degree of freedom of electrons can be efficiently exploited in the emergent field of spintronics, offering unique opportunities for efficient data transfer, computing, and storage (1-3). These concepts have been inspiring analogous approaches in photonics, where the manipulation of an artificially engineered pseudospin degree of freedom can be enabled by synthetic gauge fields acting on light (4-6). The ability to control these degrees of freedom significantly expands the landscape of available optical responses, which may revolutionize optical computing and the basic means of controlling light in photonic devices across the entire electromagnetic spectrum. We demonstrate a new class of photonic systems, described by effective Hamiltonians in which competing synthetic gauge fields, engineered in pseudospin, chirality/sublattice, and valley subspaces, result in bandgap opening at one of the valleys, whereas the other valley exhibits Dirac-like conical dispersion. We show that this effective response has marked implications on photon transport, among which are as follows: (i) a robust pseudospin- and valley-polarized one-way Klein tunneling and (ii) topological edge states that coexist within the Dirac continuum for opposite valley and pseudospin polarizations. These phenomena offer new ways to control light in photonics, in particular, for on-chip optical isolation, filtering, and wave-division multiplexing by selective action on their pseudospin and valley degrees of freedom.

9.
J Magn Reson ; 291: 47-52, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29702361

RESUMO

Dielectric resonators have previously been constructed for ultra-high frequency magnetic resonance imaging and microscopy. However, it is challenging to design these dielectric resonators at clinical field strengths due to their intrinsically large dimensions, especially when using materials with moderate permittivity. Here we propose and characterize a novel approach using artificial-dielectrics which reduces substantially the required outer diameter of the resonator. For a resonator designed to operate in a 3 Tesla scanner using water as the dielectric, a reduction in outer diameter of 37% was achieved. When used in an inductively-coupled wireless mode, the sensitivity of the artificial-dielectric resonator was measured to be slightly higher than that of a standard dielectric resonator operating in its degenerate circularly-polarized hybrid electromagnetic modes (HEM11). This study demonstrates the first application of an artificial-dielectric approach to MR volume coil design.

10.
Nat Commun ; 9(1): 909, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29500466

RESUMO

Topological phase transitions in condensed matter systems give rise to exotic states of matter such as topological insulators, superconductors, and superfluids. Photonic topological systems open a whole new realm of research and technological opportunities, exhibiting a number of important distinctions from their condensed matter counterparts. Photonic modes can leak into free space, which makes it possible to probe topological photonic phases by spectroscopic means via Fano resonances. Based on this idea, we develop a technique to retrieve the topological properties of all-dielectric metasurfaces from the measured far-field scattering characteristics. Collected angle-resolved spectra provide the momentum-dependent frequencies and lifetimes of the photonic modes that enable the retrieval of the effective Hamiltonian and extraction of the topological invariant. Our results demonstrate how the topological states of open non-Hermitian systems can be explored via far-field measurements, thus paving a way to the design of metasurfaces with unique scattering characteristics controlled via topological effects.

11.
J Magn Reson ; 286: 78-81, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29197694

RESUMO

In this work, we experimentally demonstrate an increase in the local transmit efficiency of a 1.5 T MRI scanner by using a metasurface formed by an array of brass wires embedded in a high permittivity low loss medium. Placement of such a structure inside the scanner results in strong coupling of the radiofrequency field produced by the body coil with the lowest frequency electromagnetic eigenmode of the metasurface. This leads to spatial redistribution of the near fields with enhancement of the local magnetic field and an increase in the transmit efficiency per square root maximum specific absorption rate in the region-of-interest. We have investigated this structure in vivo and achieved a factor of 3.3 enhancement in the local radiofrequency transmit efficiency.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Simulação por Computador , Campos Eletromagnéticos , Desenho de Equipamento , Ondas de Rádio
12.
Sci Rep ; 7(1): 1678, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28490772

RESUMO

Developments in metamaterials and related structures such as metasurfaces have opened up new possibilities in designing materials and devices with unique properties. Here we report a new hybrid metasurface structure, comprising a two-dimensional metamaterial surface and a very high permittivity dielectric substrate, that has been designed to enhance the local performance of an ultra-high field MRI scanner. This new flexible and compact resonant structure is the first metasurface which can be integrated with multi-element close-fitting receive coil arrays that are used for all clinical MRI scans. We demonstrate the utility of the metasurface acquiring in-vivo human brain images and proton MR spectra with enhanced local sensitivity on a commercial 7 Tesla system.


Assuntos
Campos Eletromagnéticos , Imageamento por Ressonância Magnética/métodos , Simulação por Computador , Humanos , Imagens de Fantasmas , Análise Espectral
13.
Small ; 13(11)2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28079975

RESUMO

Recently introduced field of topological photonics aims to explore the concepts of topological insulators for novel phenomena in optics. Here polymeric chains of subwavelength silicon nanodisks are studied and it is demonstrated that these chains can support two types of topological edge modes based on magnetic and electric Mie resonances, and their topological properties are fully dictated by the spatial arrangement of the nanoparticles in the chain. It is observed experimentally and described how theoretically topological phase transitions at the nanoscale define a change from trivial to nontrivial topological states when the edge mode is excited.

14.
Sci Rep ; 6: 35516, 2016 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-27759058

RESUMO

The rich potential of the microwave experiments for characterization and optimization of optical devices is discussed. While the control of the light fields together with their spatial mapping at the nanoscale is still laborious and not always clear, the microwave setup allows to measure both amplitude and phase of initially determined magnetic and electric field components without significant perturbation of the near-field. As an example, the electromagnetic properties of an add-drop filter, which became a well-known workhorse of the photonics, is experimentally studied with the aid of transmission spectroscopy measurements in optical and microwave ranges and through direct mapping of the near fields at microwave frequencies. We demonstrate that the microwave experiments provide a unique platform for the comprehensive studies of electromagnetic properties of micro- and nanophotonic devices, and allow to obtain data which are hardly acquirable by conventional optical methods.

15.
Sci Rep ; 6: 22270, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26936219

RESUMO

Existence of robust edge states at interfaces of topologically dissimilar systems is one of the most fascinating manifestations of a novel nontrivial state of matter, a topological insulator. Such nontrivial states were originally predicted and discovered in condensed matter physics, but they find their counterparts in other fields of physics, including the physics of classical waves and electromagnetism. Here, we present the first experimental realization of a topological insulator for electromagnetic waves based on engineered bianisotropic metamaterials. By employing the near-field scanning technique, we demonstrate experimentally the topologically robust propagation of electromagnetic waves around sharp corners without backscattering effects.

16.
Adv Mater ; 28(9): 1832-8, 2016 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26754827

RESUMO

It is revealed that the unique properties of ultrathin metasurface resonators can improve magnetic resonance imaging dramatically. A metasurface formed when an array of metallic wires is placed inside a scanner under the studied object and a substantial enhancement of the radio-frequency magnetic field is achieved by means of subwavelength manipulation with the metasurface, also allowing improved image resolution.


Assuntos
Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/instrumentação , Razão Sinal-Ruído , Propriedades de Superfície
17.
Sci Rep ; 5: 12956, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-26256529

RESUMO

The Purcell effect is defined as a modification of the spontaneous emission rate of a quantum emitter at the presence of a resonant cavity. However, a change of the emission rate of an emitter caused by an environment has a classical counterpart. Any small antenna tuned to a resonance can be described as an oscillator with radiative losses, and the effect of the environment on its radiation can be modeled and measured in terms of the antenna radiation resistance, similar to a quantum emitter. We exploit this analogue behavior to develop a general approach for calculating the Purcell factors of different systems and various frequency ranges including both electric and magnetic Purcell factors. Our approach is illustrated by a general equivalent scheme, and it allows resenting the Purcell factor through the continuous radiation of a small antenna at the presence of an electromagnetic environment.

18.
Nanoscale ; 7(28): 11904-8, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26108370

RESUMO

We report on the first experimental observation of topological edge states in zigzag chains of plasmonic nanodisks. We demonstrate that such edge states can be selectively excited with the linear polarization of the incident light, and visualize them directly by near-field scanning optical microscopy. Our work provides experimental verification of a novel paradigm for manipulating light at the nanoscale in topologically nontrivial structures.

19.
Phys Rev Lett ; 114(12): 123901, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25860745

RESUMO

We suggest a novel type of photonic topological edge states in zigzag arrays of dielectric nanoparticles based on optically induced magnetic Mie resonances. We verify our general concept by the proof-of-principle microwave experiments with dielectric spherical particles, and demonstrate, experimentally, the ability to control the subwavelength topologically protected electromagnetic edge modes by changing the polarization of the incident wave.

20.
Adv Mater ; 25(25): 3409-12, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23696243

RESUMO

The successful fabrication and experimental verification of a novel metamaterial based on flexible metallic helices is reported. The helices undergo compression under the influence of incident radiation, demonstrating a nonlinear chiral electromagnetic response, associated with the power-dependent change in the helix pitch. This design is promising for application to power-dependent polarization rotation of propagating waves.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...