Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ann Rheum Dis ; 72(10): 1725-31, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23313808

RESUMO

OBJECTIVE: Phagocyte-derived myeloperoxidase (MPO) and pro-inflammatory high density lipoprotein (HDL) associate with rheumatoid arthritis (RA), but the link between MPO and HDL has not been systematically examined. In this study, we investigated whether MPO can oxidise HDL and determined MPO-specific oxidative signature by apoA-1 by peptide mapping in RA subjects with and without known cardiovascular disease (CVD). METHODS: Two MPO oxidation products, 3-chlorotyrosine and 3-nitrotyrosine, were quantified by tandem mass spectrometry (MS/MS) in in vitro model system studies and in plasma and HDL derived from healthy controls and RA subjects. MPO levels and cholesterol efflux were determined. Site-specific nitration and chlorination of apoA-1 peptides were quantified by MS/MS. RESULTS: RA subjects demonstrated higher levels of MPO, MPO-oxidised HDL and diminished cholesterol efflux. There was marked increase in MPO-specific 3-chlorotyrosine and 3-nitrotyrosine content in HDL in RA subjects consistent with specific targeting of HDL, with increased nitration in RA subjects with CVD. Cholesterol efflux capacity was diminished in RA subjects and correlated inversely with HDL 3-chlorotyrosine suggesting a mechanistic role for MPO. Nitrated HDL was elevated in RACVD subjects compared with RA subjects without CVD. Oxidative peptide mapping revealed site-specific unique oxidation signatures on apoA-1 for RA subjects with and without CVD. CONCLUSIONS: We report an increase in MPO-mediated HDL oxidation that is regiospecific in RA and accentuated in those with CVD. Decreased cholesterol efflux capacity due to MPO-mediated chlorination is a potential mechanism for atherosclerosis in RA and raises the possibility that oxidant resistant forms of HDL may attenuate this increased risk.


Assuntos
Artrite Reumatoide/sangue , Lipoproteínas HDL/sangue , Peroxidase/fisiologia , Adulto , Idoso , Apolipoproteína A-I/sangue , Artrite Reumatoide/complicações , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/etiologia , Estudos de Casos e Controles , Colesterol/sangue , Feminino , Halogenação/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Oxirredução , Mapeamento de Peptídeos/métodos , Peroxidase/sangue , Espectrometria de Massas em Tandem/métodos , Tirosina/análogos & derivados , Tirosina/sangue
2.
Transl Res ; 159(4): 277-89, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22424431

RESUMO

Acute kidney injury (AKI) is a prevalent and devastating condition associated with significant morbidity and mortality. Despite marked improvements in clinical care, the outcomes for subjects with AKI have shown limited improvement in the past 50 years. A major factor inhibiting clinical progress in this field has been the inability to accurately predict and diagnose early kidney dysfunction. The current gold standard clinical and biochemical criteria for diagnosis of AKI, Risk Injury Failure Loss End-stage renal disease, and its modification, Acute Kidney Injury Network criteria, rely on urine output and serum creatinine, which are insensitive, nonspecific, and late markers of disease. The recent development of a variety of analytic mass spectrometry-based platforms have enabled separation, characterization, detection, and quantification of proteins (proteomics) and metabolites (metabolomics). These high-throughput platforms have raised hopes of identifying novel protein and metabolite markers, and recent efforts have led to several promising novel markers of AKI. However, substantial challenges remain, including the need to systematically evaluate incremental performance of these markers over and beyond current clinical and biochemical criteria for AKI. We discuss the basic issues surrounding AKI biomarker development, highlight the most promising markers currently under development, and discuss the barriers toward widespread clinical implementation of these markers.


Assuntos
Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/metabolismo , Biomarcadores/metabolismo , Metabolômica/tendências , Proteômica/tendências , Creatinina/sangue , Humanos
3.
Int J Proteomics ; 2011: 214715, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22091387

RESUMO

Chronic kidney disease (CKD) is a significant public health problem, and progression to end-stage renal disease leads to dramatic increases in morbidity and mortality. The mechanisms underlying progression of disease are poorly defined, and current noninvasive markers incompletely correlate with disease progression. Therefore, there is a great need for discovering novel markers for CKD. We utilized a glycoproteomic profiling approach to test the hypothesis that the urinary glycoproteome profile from subjects with CKD would be distinct from healthy controls. N-linked glycoproteins were isolated and enriched from the urine of healthy controls and subjects with CKD. This strategy identified several differentially expressed proteins in CKD, including a diverse array of proteins with endopeptidase inhibitor activity, protein binding functions, and acute-phase/immune-stress response activity supporting the proposal that inflammation may play a central role in CKD. Additionally, several of these proteins have been previously linked to kidney disease implicating a mechanistic role in disease pathogenesis. Collectively, our observations suggest that the human urinary glycoproteome may serve as a discovery source for novel mechanism-based biomarkers of CKD.

4.
Circulation ; 124(24): 2735-45, 2011 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-22082678

RESUMO

BACKGROUND: The nitric oxide synthase inhibitor asymmetrical dimethylarginine (ADMA) and the leukocyte-derived hemoprotein myeloperoxidase (MPO) are associated with cardiovascular diseases. Activation of monocytes and polymorphonuclear neutrophils (PMNs) with concomitant release of MPO is regulated in a nitric oxide-dependent fashion. The aim of the study was to investigate a potential 2-way interaction between ADMA and MPO. METHODS AND RESULTS: Ex vivo, ADMA uptake by isolated human PMNs, the principal source of MPO in humans, significantly impaired nitric oxide synthase activity determined by gas chromatography-mass spectrometry. In humans, short-term ADMA infusion (0.0125 mg · kg(-1) · min(-1)) significantly increased MPO plasma concentrations. Functionally, PMN exposure to ADMA enhanced leukocyte adhesion to endothelial cells, augmented NADPH oxidase activity, and stimulated PMN degranulation, resulting in release of MPO. In vivo, a 28-day ADMA infusion (250 µmol · kg(-1) · d(-1)) in C57Bl/6 mice significantly increased plasma MPO concentrations, whereas this ADMA effect on MPO was attenuated by human dimethylarginine dimethylaminohydrolase1 (hDDAH1) overexpression. Moreover, the MPO-derived reactive molecule hypochlorous acid impaired recombinant hDDAH1 activity in vitro. In MPO(-/-) mice, the lipopolysaccharide-induced increase in systemic ADMA concentrations was abrogated. CONCLUSIONS: ADMA profoundly impairs nitric oxide synthesis of PMNs, resulting in increased PMN adhesion to endothelial cells, superoxide generation, and release of MPO. In addition, MPO impairs DDAH1 activity. Our data reveal an ADMA-induced cycle of PMN activation, enhanced MPO release, and subsequent impairment of DDAH1 activity. These findings not only highlight so far unrecognized cytokine-like properties of ADMA but also identify MPO as a regulatory switch for ADMA bioavailability under inflammatory conditions.


Assuntos
Arginina/análogos & derivados , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Peroxidase/metabolismo , Amidoidrolases/genética , Amidoidrolases/metabolismo , Animais , Arginina/farmacologia , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/fisiopatologia , Relação Dose-Resposta a Droga , Feminino , Células HL-60 , Humanos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Modelos Animais , Neutrófilos/citologia , Óxido Nítrico/metabolismo , Peroxidase/deficiência , Peroxidase/genética , Transdução de Sinais/fisiologia , Superóxidos/metabolismo
5.
Exp Eye Res ; 77(3): 327-37, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12907165

RESUMO

It has long been known that mammalian retinas metabolize glucose aerobically to lactic acid and carbon dioxide. The classical view holds that glucose is the primary substrate for energy metabolism in all retinal cells, and that photoreceptor cells have the highest rates of glycolysis and respiration. A different and more recent view is that the Müller cells are the principal, if not sole aerobic producers of lactate, which then serves as the primary fuel for the mitochondria in photoreceptor cells and other retinal neurons. In this paper, we have examined these two competing hypotheses in rat and guinea pig retinas by identifying the cellular sites of glucose uptake and phosphorylation via hexokinase by means of autoradiographic studies with 3H-2-deoxyglucose (3H-2DG). The rat retina serves as a vascular model and the guinea pig retina serves as an avascular model. Rat and guinea pig eyecups were incubated in oxygenated, bicarbonate-buffered media containing glucose in the presence of labeled and unlabeled 2DG. Biochemical measurements of lactate production and ATP content were made on rat retinas incubated with different concentrations of glucose and 2DG in order to establish the optimal condition for conducting the autoradiographic studies with 3H-2DG. The optimal substrate concentrations were 1mM glucose and 0.25 mM 2DG. Results showed that following incubation of dark-adapted rat eyecups for 1 hr in media containing 1mM glucose/0.25 mM 2DG and supplemented with 3H-2DG, the label was distributed throughout all the layers of the retina, from the ganglion cell layer to the retinal pigment epithelium, with denser label associated with the outer retina (photoreceptors) relative to the density of label in the inner retina, as evaluated by counts of silver grains in individual retinal layers. Exposure of rat eyecups to light did not alter the relative distribution of label, but did increase total grain counts by 70%. However, uptake of labeled 2DG, as measured by scintillation counting of radioactivity in trichloroacetic acid extracts, was not significantly different between light- and dark-adapted rat retinas. In guinea pig eyecups, labeled 2DG was distributed throughout all the retinal layers. Addition of 10mM lactate or pyruvate to the glucose/2DG media produced no measurable change in the density or distribution of label in the eyecups. Measurements of the activity of hexokinase in rat retinas revealed that this enzyme was present in both the mitochondrial and cytosolic fractions. The present results suggest that as long as the availability of ambient glucose is adequate, retinal neurons use glucose, rather than glial-derived lactate, as the major substrate for the production of high energy phosphates.


Assuntos
Desoxiglucose , Glucose/farmacocinética , Retina/metabolismo , Trifosfato de Adenosina/análise , Animais , Autorradiografia , Citosol/metabolismo , Metabolismo Energético , Cobaias , Hexoquinase/metabolismo , Lactatos/metabolismo , Mitocôndrias/metabolismo , Fosforilação , Ratos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA