Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Development ; 135(24): 4091-9, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19004851

RESUMO

The sense of balance depends on the intricate architecture of the inner ear, which contains three semicircular canals used to detect motion of the head in space. Changes in the shape of even one canal cause drastic behavioral deficits, highlighting the need to understand the cellular and molecular events that ensure perfect formation of this precise structure. During development, the canals are sculpted from pouches that grow out of a simple ball of epithelium, the otic vesicle. A key event is the fusion of two opposing epithelial walls in the center of each pouch, thereby creating a hollow canal. During the course of a gene trap mutagenesis screen to find new genes required for canal morphogenesis, we discovered that the Ig superfamily protein Lrig3 is necessary for lateral canal development. We show that this phenotype is due to ectopic expression of the axon guidance molecule netrin 1 (Ntn1), which regulates basal lamina integrity in the fusion plate. Through a series of genetic experiments, we show that mutually antagonistic interactions between Lrig3 and Ntn1 create complementary expression domains that define the future shape of the lateral canal. Remarkably, removal of one copy of Ntn1 from Lrig3 mutants rescues both the circling behavior and the canal malformation. Thus, the Lrig3/Ntn1 feedback loop dictates when and where basement membrane breakdown occurs during canal development, revealing a new mechanism of complex tissue morphogenesis.


Assuntos
Orelha Interna/embriologia , Proteínas de Membrana/fisiologia , Fatores de Crescimento Neural/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Sequência de Bases , Membrana Basal/embriologia , Primers do DNA/genética , Retroalimentação Fisiológica , Regulação da Expressão Gênica no Desenvolvimento , Homozigoto , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Modelos Biológicos , Morfogênese , Mutação , Fatores de Crescimento Neural/deficiência , Fatores de Crescimento Neural/genética , Netrina-1 , Canais Semicirculares/embriologia , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética
2.
Proc Natl Acad Sci U S A ; 103(8): 2915-9, 2006 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-16476997

RESUMO

Neurotrophins regulate sympathetic neuron cotransmission by modulating the activity-dependent release of norepinephrine and acetylcholine. Nerve growth factor promotes excitatory noradrenergic transmission, whereas brain-derived neurotrophic factor (BDNF), acting through the p75 receptor, increases inhibitory cholinergic transmission. This regulation of corelease by target-derived factors leads to the functional modulation of myocyte beat rate in neuron-myocyte cocultures. Calcium/calmodulin-dependent protein kinase II (CaMKII) has been implicated in the control of both pre- and postsynaptic mechanisms of synaptic plasticity. We demonstrate that CaMKII acts in conjunction with p75 signaling to regulate cholinergic transmission between sympathetic neurons and heart cells. Inhibition of presynaptic CaMKII prevents the BDNF-dependent shift to inhibitory neurotransmission, whereas presynaptic expression of a constitutively active CaMKII results in inhibitory neurotransmission in the absence of added BDNF, suggesting that activation of presynaptic CaMKII is both necessary and sufficient for a shift from excitatory to inhibitory transmission. Several isozymes of CaMKII are expressed in sympathetic neurons, with the delta-CaMKII being activated by BDNF and nerve growth factor. Activated CaMKII is less effective at promoting cholinergic transmission in the absence of p75 signaling, demonstrating that p75 and CaMKII act to coordinate neurotransmitter selection in sympathetic neurons.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/fisiologia , Receptor de Fator de Crescimento Neural/fisiologia , Sistema Nervoso Simpático/fisiologia , Transmissão Sináptica , Animais , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Células Cultivadas , Ativação Enzimática , Camundongos , Fatores de Crescimento Neural/farmacologia , Neurônios/fisiologia , Ratos , Receptor de Fator de Crescimento Neural/agonistas , Sistema Nervoso Simpático/metabolismo
3.
Mol Cell Neurosci ; 23(4): 648-60, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12932444

RESUMO

Cultured neonatal sympathetic neurons can synthesize and corelease norepinephrine (NE) and acetylcholine (ACh). Evoked release of NE has an excitatory effect on the beat rate of cocultured cardiac myocytes while ACh release results in myocyte inhibition. Here we show that the cholinergic properties of the neurons and the relative level of NE and ACh corelease are modulated by neurotrophic factors. Brain-derived neurotrophic factor (BDNF) rapidly promoted ACh release in the absence of cholinergic differentiation activity and even in neurons that were predominantly noradrenergic. This increase in the cholinergic component of sympathetic cotransmission was sufficient for myocytes to display an overall inhibitory response to neuronal stimulation. In contrast, short-term growth in ciliary neurotrophic factor (CNTF) resulted in the upregulation of cholinergic and downregulation of noradrenergic markers without an effect on normal excitatory neurotransmission. Only once the cells had acquired a cholinergic phenotype did CNTF acutely promote the evoked release of the cholinergic vesicle pool. The results of this study indicate that BDNF and CNTF, acting through independent pathways, modulate NE and ACh cotransmission to regulate the level of sympathetic excitation or inhibition of cardiac myocytes.


Assuntos
Acetilcolina/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Diferenciação Celular/fisiologia , Fator Neurotrófico Ciliar/metabolismo , Gânglios Simpáticos/metabolismo , Neurônios/metabolismo , Animais , Animais Recém-Nascidos , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Colina O-Acetiltransferase/genética , Fator Neurotrófico Ciliar/farmacologia , Técnicas de Cocultura , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/fisiologia , Gânglios Simpáticos/efeitos dos fármacos , Gânglios Simpáticos/crescimento & desenvolvimento , Camundongos , Camundongos Knockout , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Neurônios/efeitos dos fármacos , Norepinefrina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Norepinefrina , Fenótipo , RNA Mensageiro/metabolismo , Ratos , Simportadores/genética , Tirosina 3-Mono-Oxigenase/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
4.
Nat Neurosci ; 5(6): 539-45, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11992117

RESUMO

Cardiac function is modulated by norepinephrine release from innervating sympathetic neurons. These neurons also form excitatory connections onto cardiac myocytes in culture. Here we report that brain-derived neurotrophic factor (BDNF) altered the neurotransmitter release properties of these sympathetic neuron-myocyte connections in rodent cell culture, leading to a rapid shift from excitatory to inhibitory cholinergic transmission in response to neuronal stimulation. Fifteen minutes of BDNF perfusion was sufficient to cause this shift to inhibitory transmission, indicating that BDNF promotes preferential release of acetylcholine in response to neuronal stimulation. We found that p75(-/-) neurons did not release acetylcholine in response to BDNF and that neurons overexpressing p75 showed increased cholinergic transmission, indicating that the actions of BDNF are mediated through the p75 neurotrophin receptor. Our findings indicate that p75 is involved in modulating the release of distinct neurotransmitter pools, resulting in a functional switch between excitatory and inhibitory neurotransmission in individual neurons.


Assuntos
Neurotransmissores/metabolismo , Receptores de Fator de Crescimento Neural/fisiologia , Sistema Nervoso Simpático/metabolismo , Acetilcolina/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Comunicação Celular/fisiologia , Células Cultivadas , Fibras Colinérgicas/efeitos dos fármacos , Fibras Colinérgicas/fisiologia , Técnicas de Cocultura , Camundongos , Camundongos Knockout/genética , Miocárdio/citologia , Neurônios/metabolismo , Neurônios/fisiologia , Terminações Pré-Sinápticas/efeitos dos fármacos , Ratos , Receptor de Fator de Crescimento Neural , Receptores de Fator de Crescimento Neural/genética , Sistema Nervoso Simpático/citologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...