Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Sci Adv ; 9(14): eadg1530, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37027468

RESUMO

Sedimentological, textural, and microscale analyses of the Mount McRae Shale revealed a complex postdepositional history, previously unrecognized in bulk geochemical studies. We found that metal enrichments in the shale do not reside with depositional organic carbon, as previously proposed by Anbar et al., but with late-stage pyrite, compromising claims for a "whiff" of oxygen ~50 million years before the Great Oxygenation Event.

2.
Sci Adv ; 8(1): eabj7190, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34985950

RESUMO

Transient appearances of oxygen have been inferred before the Great Oxygenation Event (GOE) [∼2.3 billion years (Ga) ago] based on redox-sensitive elements such as Mo and S­most prominently from the ∼2.5-Ga Mount McRae Shale in Western Australia. We present new spatially resolved data including synchrotron-based x-ray spectroscopy and secondary ion mass spectrometry to characterize the petrogenesis of the Mount McRae Shale. Sediments were primarily composed of organic matter and volcanic ash (a potential source of Mo), with U-Pb ages revealing extremely low sedimentation rates. Catagenesis created bedding-parallel microfractures, which subsequently acted as fluid pathways for metasomatic alteration and recent oxidative weathering. Our collective observations suggest that the bulk chemical datasets pointing toward a "whiff" of oxygen developed during postdepositional events. Nonzero Δ33S in trace-metal­poor, early diagenetic pyrite and the unusually enriched organic carbon at low sedimentation rates instead suggest that environmental oxygen levels were negligible ∼150 million years before the GOE.

3.
Nat Commun ; 12(1): 3629, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34131126

RESUMO

True polar wander (TPW), or planetary reorientation, is well documented for other planets and moons and for Earth at present day with satellites, but testing its prevalence in Earth's past is complicated by simultaneous motions due to plate tectonics. Debate has surrounded the existence of Late Cretaceous TPW ca. 84 million years ago (Ma). Classic palaeomagnetic data from the Scaglia Rossa limestone of Italy are the primary argument against the existence of ca. 84 Ma TPW. Here we present a new high-resolution palaeomagnetic record from two overlapping stratigraphic sections in Italy that provides evidence for a ~12° TPW oscillation from 86 to 78 Ma. This observation represents the most recent large-scale TPW documented and challenges the notion that the spin axis has been largely stable over the past 100 million years.

4.
Proc Natl Acad Sci U S A ; 115(51): 12938-12943, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30509974

RESUMO

Terrestrial environments have been suggested as an oxic haven for eukaryotic life and diversification during portions of the Proterozoic Eon when the ocean was dominantly anoxic. However, iron speciation and Fe/Al data from the ca. 1.1-billion-year-old Nonesuch Formation, deposited in a large lake and bearing a diverse assemblage of early eukaryotes, are interpreted to indicate persistently anoxic conditions. To shed light on these distinct hypotheses, we analyzed two drill cores spanning the transgression into the lake and its subsequent shallowing. While the proportion of highly reactive to total iron (FeHR/FeT) is consistent through the sediments and typically in the range taken to be equivocal between anoxic and oxic conditions, magnetic experiments and petrographic data reveal that iron exists in three distinct mineral assemblages resulting from an oxycline. In the deepest waters, reductive dissolution of iron oxides records an anoxic environment. However, the remainder of the sedimentary succession has iron oxide assemblages indicative of an oxygenated environment. At intermediate water depths, a mixed-phase facies with hematite and magnetite indicates low oxygen conditions. In the shallowest waters of the lake, nearly every iron oxide has been oxidized to its most oxidized form, hematite. Combining magnetics and textural analyses results in a more nuanced understanding of ambiguous geochemical signals and indicates that for much of its temporal duration, and throughout much of its water column, there was oxygen in the waters of Paleolake Nonesuch.


Assuntos
Sedimentos Geológicos/química , Ferro/análise , Lagos/química , Oxigênio/análise , Evolução Biológica , Eucariotos/fisiologia , Ferro/química , Magnetismo , Oxirredução , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA