Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 257
Filtrar
1.
Cancer Immunol Res ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701369

RESUMO

Glutamine metabolism in tumor microenvironments critically regulates anti-tumor immunity. Using glutamine-antagonist prodrug JHU083, we report potent tumor growth inhibition in urologic tumors by JHU083-reprogrammed tumor-associated macrophages (TAMs) and tumor-infiltrating monocytes (TIMs). We show JHU083-mediated glutamine antagonism in tumor microenvironments induces TNF, pro-inflammatory, and mTORC1 signaling in intratumoral TAM clusters. JHU083-reprogrammed TAMs also exhibit increased tumor cell phagocytosis and diminished pro-angiogenic capacities. In vivo inhibition of TAM glutamine consumption resulted in increased glycolysis, a broken TCA cycle, and purine metabolism disruption. Although the anti-tumor effect of glutamine antagonism on tumor-infiltrating T cells was moderate, JHU083 promoted a stem cell-like phenotype in CD8+ T cells and decreased Treg abundance. Finally, JHU083 caused a ubiquitous shutdown in glutamine utilizing metabolic pathways in tumor cells, leading to reduced HIF-1alpha, c-MYC phosphorylation, and induction of tumor cell apoptosis, all key anti-tumor features.

2.
Prostate ; 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38678435

RESUMO

BACKGROUND: Prostate-specific membrane antigen (PSMA) is a biomarker and therapeutic target of high relevance in prostate cancer. Although upregulated PSMA expression is a well-documented feature of prostatic neoplasia in both humans and canids, to date humans are the only species known to express PSMA basally in the prostate. Thus, traditional laboratory animal species have limited utility for studying PSMA biology in the prostate or for predicting efficacy or toxicity of PSMA-targeted agents. METHODS: PSMA expression in human, macaque, and marmoset prostates was determined by immunohistochemistry, employing an antibody with validated cross-species reactivity in a PSMA-positive control tissue; kidney. RESULTS: We newly discover that the common marmoset endogenously expresses PSMA in non-diseased prostate, similar to humans, and thus may be a valuable preclinical model for researchers studying PSMA.

3.
Mol Psychiatry ; 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615102

RESUMO

We report a mechanism that underlies stress-induced cognitive inflexibility at the molecular level. In a mouse model under subacute cellular stress in which deficits in rule shifting tasks were elicited, the nuclear glyceraldehyde dehydrogenase (N-GAPDH) cascade was activated specifically in microglia in the prelimbic cortex. The cognitive deficits were normalized with a pharmacological intervention with a compound (the RR compound) that selectively blocked the initiation of N-GAPDH cascade without affecting glycolytic activity. The normalization was also observed with a microglia-specific genetic intervention targeting the N-GAPDH cascade. At the mechanistic levels, the microglial secretion of High-Mobility Group Box (HMGB), which is known to bind with and regulate the NMDA-type glutamate receptors, was elevated. Consequently, the hyperactivation of the prelimbic layer 5 excitatory neurons, a neural substrate for cognitive inflexibility, was also observed. The upregulation of the microglial HMGB signaling and neuronal hyperactivation were normalized by the pharmacological and microglia-specific genetic interventions. Taken together, we show a pivotal role of cortical microglia and microglia-neuron interaction in stress-induced cognitive inflexibility. We underscore the N-GAPDH cascade in microglia, which causally mediates stress-induced cognitive alteration.

4.
bioRxiv ; 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38529497

RESUMO

Dopamine (DA) D2-like receptors in both the central nervous system (CNS) and the periphery are key modulators of metabolism. Moreover, disruption of D2-like receptor signaling is implicated in dysglycemia. Yet, the respective metabolic contributions of CNS versus peripheral D2-like receptors including D2 (D2R) and D3 (D3R) receptors remain poorly understood. To address this, we developed new pharmacological tools, D2-like receptor agonists with diminished and delayed blood-brain barrier capability, to selectively manipulate D2R/D3R signaling in the periphery. We designated bromocriptine methiodide (BrMeI), a quaternary methiodide analogue of D2/3R agonist and diabetes drug bromocriptine, as our lead compound based on preservation of D2R/D3R binding and functional efficacy. We then used BrMeI and unmodified bromocriptine to dissect relative contributions of CNS versus peripheral D2R/D3R signaling in treating dysglycemia. Systemic administration of bromocriptine, with unrestricted access to CNS and peripheral targets, significantly improved both insulin sensitivity and glucose tolerance in obese, dysglycemic mice in vivo. In contrast, metabolic improvements were attenuated when access to bromocriptine was restricted either to the CNS through intracerebroventricular administration or delayed access to the CNS via BrMeI. Our findings demonstrate that the coordinated actions of both CNS and peripheral D2-like receptors are required for correcting dysglycemia. Ultimately, the development of a first-generation of drugs designed to selectively target the periphery provides a blueprint for dissecting mechanisms of central versus peripheral DA signaling and paves the way for novel strategies to treat dysglycemia.

5.
AIDS ; 38(7): 1003-1011, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38411600

RESUMO

OBJECTIVES: Cognitive impairment persists in virally suppressed people with HIV (VS-PWH) especially in higher order domains. One cortical circuit, linked to these domains, is regulated by N -acetyl-aspartyl glutamate (NAAG), the endogenous agonist of the metabotropic glutamate receptor 3. The enzyme glutamate carboxypeptidase II (GCPII) catabolizes NAAG and is upregulated in aging and disease. Inhibition of GCPII increases brain NAAG and improves learning and memory in rodent and primate models. DESIGN: As higher order cognitive impairment is present in VS-PWH, and NAAG has not been investigated in earlier magnetic resonance spectroscopy studies (MRS), we investigated if brain NAAG levels measured by MRS were associated with cognitive function. METHODS: We conducted a retrospective analysis of 7-Tesla MRS data from a previously published study on cognition in older VS-PWH. The original study did not separately quantify NAAG, therefore, work for this report focused on relationships between regional NAAG levels in frontal white matter (FWM), left hippocampus, left basal ganglia and domain-specific cognitive performance in 40 VS-PWH after adjusting for confounds. Participants were older than 50 years, negative for affective and neurologic disorders, and had no prior 3-month psychoactive-substance use. RESULTS: Higher NAAG levels in FWM were associated with better attention/working memory. Higher left basal ganglia NAAG related to better verbal fluency. There was a positive relationship between hippocampal NAAG and executive function which lost significance after correction for confounds. CONCLUSION: These data suggest brain NAAG serves as a biomarker of cognition in VS-PWH. Pharmacological modulation of brain NAAG warrants investigation as a therapeutic approach for cognitive deficits in VS-PWH.


Assuntos
Encéfalo , Dipeptídeos , Infecções por HIV , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Infecções por HIV/psicologia , Estudos Retrospectivos , Encéfalo/metabolismo , Idoso , Espectroscopia de Ressonância Magnética , Cognição , Disfunção Cognitiva/metabolismo , Resposta Viral Sustentada
6.
ACS Chem Neurosci ; 15(3): 394-399, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38237559

RESUMO

The discovery and development of drugs to treat diseases of the nervous system remains challenging. There is a higher attrition rate in the clinical stage for nervous system experimental drugs compared to other disease areas. In the preclinical stage, additional challenges arise from the considerable effort required to find molecules that penetrate the blood-brain barrier (BBB) coupled with the poor predictive value of many preclinical models of nervous system diseases. In the era of target-based drug discovery, the critical first step of drug discovery projects is the selection of a therapeutic target which is largely driven by its presumed pathogenic involvement. For nervous system diseases, however, the feasibility of identifying potent molecules within the stringent range of molecular properties necessary for BBB penetration should represent another important factor in target selection. To address the latter, the present review analyzes the distribution of human protein targets of FDA-approved drugs for nervous system disorders and compares it with drugs for other disease areas. We observed a substantial difference in the distribution of therapeutic targets across the two clusters. We expanded on this finding by analyzing the physicochemical properties of nervous and non-nervous system drugs in each target class by using the central nervous system multiparameter optimization (CNS MPO) algorithm. These data may serve as useful guidance in making more informed decisions when selecting therapeutic targets for nervous system disorders.


Assuntos
Doenças do Sistema Nervoso Central , Doenças do Sistema Nervoso , Humanos , Fármacos do Sistema Nervoso Central/química , Sistema Nervoso Central/metabolismo , Barreira Hematoencefálica/metabolismo , Descoberta de Drogas , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso Central/tratamento farmacológico
7.
Clin Exp Gastroenterol ; 16: 237-247, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38090679

RESUMO

Background: Prostate-specific membrane antigen (PSMA) is highly and specifically upregulated in active-inflamed mucosa of patients with inflammatory bowel disease (IBD). We hypothesized that this upregulation would be detectable using a PSMA-targeted positron emission tomography/computed tomography (PET/CT) imaging agent, [18F]DCFPyL, enabling non-invasive visualization of inflammation. A noninvasive means of detecting active inflammation would have high clinical value in localization and management of IBD. Study: We performed [18F]DCFPyL imaging in three IBD patients with active disease. Abnormally increased gastrointestinal [18F]DCFPyL uptake was observed in areas with endoscopic, histologic, and immunohistochemical inflammation, demonstrating partial overlap of segments of bowel with abnormal [18F]DCFPyL uptake and active inflammation. Conclusion: This study demonstrates that PSMA-targeted [18F]DCFPyL PET can effectively detect regions of inflamed mucosa in patients with IBD, suggesting its utility as a non-invasive imaging agent to assess location, extent, and disease activity in IBD.

8.
Transl Neurodegener ; 12(1): 56, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049923

RESUMO

BACKGROUND: Cognitive decline in Alzheimer's disease (AD) is associated with hyperphosphorylated tau (pTau) propagation between neurons along synaptically connected networks, in part via extracellular vesicles (EVs). EV biogenesis is triggered by ceramide enrichment at the plasma membrane from neutral sphingomyelinase2 (nSMase2)-mediated cleavage of sphingomyelin. We report, for the first time, that human tau expression elevates brain ceramides and nSMase2 activity. METHODS: To determine the therapeutic benefit of inhibiting this elevation, we evaluated PDDC, the first potent, selective, orally bioavailable, and brain-penetrable nSMase2 inhibitor in the transgenic PS19 AD mouse model. Additionally, we directly evaluated the effect of PDDC on tau propagation in a mouse model where an adeno-associated virus (AAV) encoding P301L/S320F double mutant human tau was stereotaxically-injected unilaterally into the hippocampus. The contralateral transfer of the double mutant human tau to the dentate gyrus was monitored. We examined ceramide levels, histopathological changes, and pTau content within EVs isolated from the mouse plasma. RESULTS: Similar to human AD, the PS19 mice exhibited increased brain ceramide levels and nSMase2 activity; both were completely normalized by PDDC treatment. The PS19 mice also exhibited elevated tau immunostaining, thinning of hippocampal neuronal cell layers, increased mossy fiber synaptophysin immunostaining, and glial activation, all of which were pathologic features of human AD. PDDC treatment reduced these changes. The plasma of PDDC-treated PS19 mice had reduced levels of neuronal- and microglial-derived EVs, the former carrying lower pTau levels, compared to untreated mice. In the tau propagation model, PDDC normalized the tau-induced increase in brain ceramides and significantly reduced the amount of tau propagation to the contralateral side. CONCLUSIONS: PDDC is a first-in-class therapeutic candidate that normalizes elevated brain ceramides and nSMase2 activity, leading to the slowing of tau spread in AD mice.


Assuntos
Doença de Alzheimer , Animais , Humanos , Camundongos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Ceramidas/metabolismo , Camundongos Transgênicos , Neurônios/metabolismo
9.
J Med Chem ; 66(22): 15493-15510, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37949450

RESUMO

The glutamine antagonist 6-diazo-5-oxo-l-norleucine (DON) exhibits remarkable anticancer efficacy; however, its therapeutic potential is hindered by its toxicity to gastrointestinal (GI) tissues. We recently reported the discovery of DRP-104, a tumor-targeted DON prodrug with excellent efficacy and tolerability, which is currently in clinical trials. However, DRP-104 exhibits limited aqueous solubility, and the instability of its isopropyl ester promoiety leads to the formation of an inactive M1-metabolite, reducing overall systemic prodrug exposure. Herein, we aimed to synthesize DON prodrugs with various ester and amide promoieties with improved solubility, GI stability, and DON tumor delivery. Twenty-one prodrugs were synthesized and characterized in stability and pharmacokinetics studies. Of these, P11, tert-butyl-(S)-6-diazo-2-((S)-2-(2-(dimethylamino)acetamido)-3-phenylpropanamido)-5-oxo-hexanoate, showed excellent metabolic stability in plasma and intestinal homogenate, high aqueous solubility, and high tumor DON exposures and preserved the ideal tumor-targeting profile of DRP-104. In conclusion, we report a new generation of glutamine antagonist prodrugs with improved physicochemical and pharmacokinetic attributes.


Assuntos
Neoplasias , Pró-Fármacos , Humanos , Pró-Fármacos/química , Diazo-Oxo-Norleucina/farmacocinética , Glutamina , Ésteres/uso terapêutico , Neoplasias/tratamento farmacológico
10.
Nat Commun ; 14(1): 7427, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37973991

RESUMO

As one of the most successful human pathogens, Mycobacterium tuberculosis (Mtb) has evolved a diverse array of determinants to subvert host immunity and alter host metabolic patterns. However, the mechanisms of pathogen interference with host metabolism remain poorly understood. Here we show that a glutamine metabolism antagonist, JHU083, inhibits Mtb proliferation in vitro and in vivo. JHU083-treated mice exhibit weight gain, improved survival, a 2.5 log lower lung bacillary burden at 35 days post-infection, and reduced lung pathology. JHU083 treatment also initiates earlier T-cell recruitment, increased proinflammatory myeloid cell infiltration, and a reduced frequency of immunosuppressive myeloid cells when compared to uninfected and rifampin-treated controls. Metabolomic analysis of lungs from JHU083-treated Mtb-infected mice reveals citrulline accumulation, suggesting elevated nitric oxide (NO) synthesis, and lowered levels of quinolinic acid which is derived from the immunosuppressive metabolite kynurenine. JHU083-treated macrophages also produce more NO potentiating their antibacterial activity. When tested in an immunocompromised mouse model of Mtb infection, JHU083 loses its therapeutic efficacy suggesting the drug's host-directed effects are likely to be predominant. Collectively, these data reveal that JHU083-mediated glutamine metabolism inhibition results in dual antibacterial and host-directed activity against tuberculosis.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Camundongos , Humanos , Animais , Glutamina/farmacologia , Tuberculose/microbiologia , Antibacterianos/farmacologia
11.
J Immunol ; 211(12): 1767-1782, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37947442

RESUMO

Understanding the mechanisms underlying the acquisition and maintenance of effector function during T cell differentiation is important to unraveling how these processes can be dysregulated in the context of disease and manipulated for therapeutic intervention. In this study, we report the identification of a previously unappreciated regulator of murine T cell differentiation through the evaluation of a previously unreported activity of the kinase inhibitor, BioE-1197. Specifically, we demonstrate that liver kinase B1 (LKB1)-mediated activation of salt-inducible kinases epigenetically regulates cytokine recall potential in effector CD8+ and Th1 cells. Evaluation of this phenotype revealed that salt-inducible kinase-mediated phosphorylation-dependent stabilization of histone deacetylase 7 (HDAC7) occurred during late-stage effector differentiation. HDAC7 stabilization increased nuclear HDAC7 levels, which correlated with total and cytokine loci-specific reductions in the activating transcription mark histone 3 lysine 27 acetylation (H3K27Ac). Accordingly, HDAC7 stabilization diminished transcriptional induction of cytokine genes upon restimulation. Inhibition of this pathway during differentiation produced effector T cells epigenetically poised for enhanced cytokine recall. This work identifies a previously unrecognized target for enhancing effector T cell functionality.


Assuntos
Citocinas , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases , Animais , Camundongos , Diferenciação Celular , Citocinas/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo
12.
Alzheimers Dement (N Y) ; 9(4): e12431, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37915375

RESUMO

Introduction: Current approaches for treating sporadic Alzheimer's disease (sAD) focus on removal of amyloid beta 1-42 (Aß1-42) or phosphorylated tau, but additional strategies are needed to reduce neuropathology at earlier stages prior to neuronal damage. Longstanding data show that calcium dysregulation is a key etiological factor in sAD, and the cortical neurons most vulnerable to tau pathology show magnified calcium signaling, for example in dorsolateral prefrontal cortex (dlPFC) and entorhinal cortex (ERC). In primate dlPFC and ERC, type 3 metabotropic glutamate receptors (mGluR3s) are predominately post-synaptic, on spines, where they regulate cAMP-calcium signaling, a process eroded by inflammatory glutamate carboxypeptidase II (GCPII) actions. The current study tested whether enhancing mGluR3 regulation of calcium via chronic inhibition of GCPII would reduce tau hyperphosphorylation in aged macaques with naturally-occurring tau pathology. Methods: Aged rhesus macaques were treated daily with the GCPII inhibitor, 2-MPPA (2-3-mercaptopropyl-penanedioic acid (2-MPPA)),Aged rhesus macaques were treated daily with the GCPII inhibitor, 2-MPPA (2-3-mercaptopropyl-penanedioic acid (2-MPPA)). Results: Aged macaques that received 2-MPPA had significantly lower pT217Tau levels in dlPFC and ERC, and had lowered plasma pT217Tau levels from baseline. pT217Tau levels correlated significantly with GCPII activity in dlPFC. Both 2-MPPA- and vehicle-treated monkeys showed cognitive improvement; 2-MPPA had no apparent side effects. Exploratory CSF analyses indicated reduced pS202Tau with 2-MPPA administration, confirmed in dlPFC samples. Discussion: These data provide proof-of-concept support that GCPII inhibition can reduce tau hyperphosphorylation in the primate cortices most vulnerable in sAD. GCPII inhibition may be particularly helpful in reducing the risk of sAD caused by inflammation. These data in nonhuman primates should encourage future research on this promising mechanism. Highlights: Inflammation is a key driver of sporadic Alzheimer's disease.GCPII inflammatory signaling in brain decreases mGluR3 regulation of calcium.Chronic inhibition of GCPII inflammatory signaling reduced pT217Tau in aged monkeys.GCPII inhibition is a novel strategy to help prevent tau pathology at early stages.

13.
Pharmaceutics ; 15(9)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37765332

RESUMO

The progression of Alzheimer's disease (AD) correlates with the propagation of hyperphosphorylated tau (pTau) from the entorhinal cortex to the hippocampus and neocortex. Neutral sphingomyelinase2 (nSMase2) is critical in the biosynthesis of extracellular vesicles (EVs), which play a role in pTau propagation. We recently conjugated DPTIP, a potent nSMase2 inhibitor, to hydroxyl-PAMAM-dendrimer nanoparticles that can improve brain delivery. We showed that dendrimer-conjugated DPTIP (D-DPTIP) robustly inhibited the spread of pTau in an AAV-pTau propagation model. To further evaluate its efficacy, we tested D-DPTIP in the PS19 transgenic mouse model. Unexpectantly, D-DPTIP showed no beneficial effect. To understand this discrepancy, we assessed D-DPTIP's brain localization. Using immunofluorescence and fluorescence-activated cell-sorting, D-DPTIP was found to be primarily internalized by microglia, where it selectively inhibited microglial nSMase2 activity with no effect on other cell types. Furthermore, D-DPTIP inhibited microglia-derived EV release into plasma without affecting other brain-derived EVs. We hypothesize that microglial targeting allowed D-DPTIP to inhibit tau propagation in the AAV-hTau model, where microglial EVs play a central role in propagation. However, in PS19 mice, where tau propagation is independent of microglial EVs, it had a limited effect. Our findings confirm microglial targeting with hydroxyl-PAMAM dendrimers and highlight the importance of understanding cell-specific mechanisms when designing targeted AD therapies.

14.
Mol Cancer Ther ; 22(12): 1390-1403, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37616542

RESUMO

Malignant peripheral nerve sheath tumors (MPNST) are highly aggressive soft-tissue sarcomas that arise from neural tissues and carry a poor prognosis. Previously, we found that the glutamine amidotransferase inhibitor JHU395 partially impeded tumor growth in preclinical models of MPNST. JHU395 inhibits de novo purine synthesis in human MPNST cells and murine tumors with partial decreases in purine monophosphates. On the basis of prior studies showing enhanced efficacy when glutamine amidotransferase inhibition was combined with the antimetabolite 6-mercaptopurine (6-MP), we hypothesized that such a combination would be efficacious in MPNST. Given the known toxicity associated with 6-MP, we set out to develop a more efficient and well-tolerated drug that targets the purine salvage pathway. Here, we report the discovery of Pro-905, a phosphoramidate protide that delivered the active nucleotide antimetabolite thioguanosine monophosphate (TGMP) to tumors over 2.5 times better than equimolar 6-MP. Pro-905 effectively prevented the incorporation of purine salvage substrates into nucleic acids and inhibited colony formation of human MPNST cells in a dose-dependent manner. In addition, Pro-905 inhibited MPNST growth and was well-tolerated in both human patient-derived xenograft (PDX) and murine flank MPNST models. When combined with JHU395, Pro-905 enhanced the colony formation inhibitory potency of JHU395 in human MPNST cells and augmented the antitumor efficacy of JHU395 in mice. In summary, the dual inhibition of the de novo and purine salvage pathways in preclinical models may safely be used to enhance therapeutic efficacy against MPNST.


Assuntos
Neoplasias de Bainha Neural , Neurofibrossarcoma , Humanos , Animais , Camundongos , Glutamina , Linhagem Celular Tumoral , Antimetabólitos/uso terapêutico , Neoplasias de Bainha Neural/tratamento farmacológico
15.
Eur J Med Chem ; 259: 115674, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37536209

RESUMO

Neutral sphingomyelinase 2 (nSMase2) has gained increasing attention as a therapeutic target to regulate ceramide production in various disease conditions. Phenyl (R)-(1-(3-(3,4-dimethoxyphenyl)-2,6-dimethylimidazo[1,2-b]pyridazin-8-yl)-pyrrolidin-3-yl)carbamate (PDDC) is a submicromolar nSMase2 inhibitor and has been widely used to study the pharmacological effects of nSMase2 inhibition. Through screening of compounds containing a bicyclic 5-6 fused ring, larotrectinib containing a pyrazolo[1,5-a]pyrimidine ring was identified as a low micromolar inhibitor of nSMase2. This prompted us to investigate the pyrazolo[1,5-a]pyrimidin-3-amine ring as a novel scaffold to replace the imidazo[1,2-b]pyridazine-8-amine ring of PDDC. A series of molecules containing a pyrazolo[1,5-a]pyrimidin-3-amine ring were synthesized and tested for their ability to inhibit human nSMase2. Several compounds exhibited nSMase2 inhibitory potency superior to that of PDDC. Among these, N,N-dimethyl-5-morpholinopyrazolo[1,5-a]pyrimidin-3-amine (11j) was found to be metabolically stable in liver microsomes and orally available with a favorable brain-to-plasma ratio, demonstrating the potential of pyrazolo[1,5-a]pyrimidine ring as an effective scaffold for nSMase2 inhibition.


Assuntos
Aminas , Esfingomielina Fosfodiesterase , Humanos , Pirimidinas/farmacologia , Ceramidas
16.
J Med Chem ; 66(17): 12141-12162, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37646374

RESUMO

Pharmacological targeting of the dopamine D4 receptor (D4R)─expressed in brain regions that control cognition, attention, and decision-making─could be useful for several neuropsychiatric disorders including substance use disorders (SUDs). This study focused on the synthesis and evaluation of a novel series of benzothiazole analogues designed to target D4R. We identified several compounds with high D4R binding affinity (Ki ≤ 6.9 nM) and >91-fold selectivity over other D2-like receptors (D2R, D3R) with diverse partial agonist and antagonist profiles. Novel analogue 16f is a potent low-efficacy D4R partial agonist, metabolically stable in rat and human liver microsomes, and has excellent brain penetration in rats (AUCbrain/plasma > 3). 16f (5-30 mg/kg, i.p.) dose-dependently decreased iv cocaine self-administration in rats, consistent with previous results produced by D4R-selective antagonists. Off-target antagonism of 5-HT2A or 5-HT2B may also contribute to these effects. Results with 16f support further efforts to target D4R in SUD treatment.


Assuntos
Cocaína , Transtornos Relacionados ao Uso de Substâncias , Humanos , Animais , Ratos , Serotonina , Benzotiazóis/farmacologia , Benzotiazóis/uso terapêutico , Encéfalo , Cocaína/farmacologia
17.
Sci Transl Med ; 15(708): eabn7491, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37556558

RESUMO

There is an urgent need to develop therapeutics for inflammatory bowel disease (IBD) because up to 40% of patients with moderate-to-severe IBD are not adequately controlled with existing drugs. Glutamate carboxypeptidase II (GCPII) has emerged as a promising therapeutic target. This enzyme is minimally expressed in normal ileum and colon, but it is markedly up-regulated in biopsies from patients with IBD and preclinical colitis models. Here, we generated a class of GCPII inhibitors designed to be gut-restricted for oral administration, and we interrogated efficacy and mechanism using in vitro and in vivo models. The lead inhibitor, (S)-IBD3540, was potent (half maximal inhibitory concentration = 4 nanomolar), selective, gut-restricted (AUCcolon/plasma > 50 in mice with colitis), and efficacious in acute and chronic rodent colitis models. In dextran sulfate sodium-induced colitis, oral (S)-IBD3540 inhibited >75% of colon GCPII activity, dose-dependently improved gross and histologic disease, and markedly attenuated monocytic inflammation. In spontaneous colitis in interleukin-10 (IL-10) knockout mice, once-daily oral (S)-IBD3540 initiated after disease onset improved disease, normalized colon histology, and attenuated inflammation as evidenced by reduced fecal lipocalin 2 and colon pro-inflammatory cytokines/chemokines, including tumor necrosis factor-α and IL-17. Using primary human colon epithelial air-liquid interface monolayers to interrogate the mechanism, we further found that (S)-IBD3540 protected against submersion-induced oxidative stress injury by decreasing barrier permeability, normalizing tight junction protein expression, and reducing procaspase-3 activation. Together, this work demonstrated that local inhibition of dysregulated gastrointestinal GCPII using the gut-restricted, orally active, small-molecule (S)-IBD3540 is a promising approach for IBD treatment.


Assuntos
Colite , Glutamato Carboxipeptidase II , Doenças Inflamatórias Intestinais , Animais , Humanos , Camundongos , Colite/tratamento farmacológico , Colite/metabolismo , Colo/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Glutamato Carboxipeptidase II/antagonistas & inibidores , Inflamação/patologia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/patologia , Camundongos Endogâmicos C57BL
18.
Proc Natl Acad Sci U S A ; 120(28): e2219543120, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37406092

RESUMO

Although HIV-1 Gag is known to drive viral assembly and budding, the precise mechanisms by which the lipid composition of the plasma membrane is remodeled during assembly are incompletely understood. Here, we provide evidence that the sphingomyelin hydrolase neutral sphingomyelinase 2 (nSMase2) interacts with HIV-1 Gag and through the hydrolysis of sphingomyelin creates ceramide that is necessary for proper formation of the viral envelope and viral maturation. Inhibition or depletion of nSMase2 resulted in the production of noninfectious HIV-1 virions with incomplete Gag lattices lacking condensed conical cores. Inhibition of nSMase2 in HIV-1-infected humanized mouse models with a potent and selective inhibitor of nSMase2 termed PDDC [phenyl(R)-(1-(3-(3,4-dimethoxyphenyl)-2, 6-dimethylimidazo[1,2-b]pyridazin-8-yl) pyrrolidin-3-yl)-carbamate] produced a linear reduction in levels of HIV-1 in plasma. If undetectable plasma levels of HIV-1 were achieved with PDDC treatment, viral rebound did not occur for up to 4 wk when PDDC was discontinued. In vivo and tissue culture results suggest that PDDC selectively kills cells with actively replicating HIV-1. Collectively, this work demonstrates that nSMase2 is a critical regulator of HIV-1 replication and suggests that nSMase2 could be an important therapeutic target with the potential to kill HIV-1-infected cells.


Assuntos
HIV-1 , Esfingomielina Fosfodiesterase , Camundongos , Animais , Esfingomielina Fosfodiesterase/metabolismo , HIV-1/metabolismo , Esfingomielinas/metabolismo , Membrana Celular/metabolismo
19.
Proc Natl Acad Sci U S A ; 120(28): e2219475120, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37406093

RESUMO

HIV-1 assembly occurs at the inner leaflet of the plasma membrane (PM) in highly ordered membrane microdomains. The size and stability of membrane microdomains is regulated by activity of the sphingomyelin hydrolase neutral sphingomyelinase 2 (nSMase2) that is localized primarily to the inner leaflet of the PM. In this study, we demonstrate that pharmacological inhibition or depletion of nSMase2 in HIV-1-producer cells results in a block in the processing of the major viral structural polyprotein Gag and the production of morphologically aberrant, immature HIV-1 particles with severely impaired infectivity. We find that disruption of nSMase2 also severely inhibits the maturation and infectivity of other primate lentiviruses HIV-2 and simian immunodeficiency virus, has a modest or no effect on nonprimate lentiviruses equine infectious anemia virus and feline immunodeficiency virus, and has no effect on the gammaretrovirus murine leukemia virus. These studies demonstrate a key role for nSMase2 in HIV-1 particle morphogenesis and maturation.


Assuntos
HIV-1 , Vírus da Anemia Infecciosa Equina , Animais , Gatos , Cavalos , Camundongos , HIV-1/fisiologia , Esfingomielina Fosfodiesterase/metabolismo , Montagem de Vírus , Lentivirus
20.
Res Sq ; 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37502930

RESUMO

Background: Cognitive decline in Alzheimer's disease (AD) is associated with prion-like tau propagation between neurons along synaptically connected networks, in part via extracellular vesicles (EV). EV biogenesis is triggered by ceramide enrichment at the plasma membrane from neutral sphingomyelinase2(nSMase2)-mediated cleavage of sphingomyelin. We report, for the first time, that tau expression triggers an elevation in brain ceramides and nSMase2 activity. Methods: To determine the therapeutic benefit of inhibiting this elevation, we evaluated the efficacy of PDDC, the first potent, selective, orally bioavailable, and brain-penetrable nSMase2 inhibitor, in the PS19 tau transgenic AD murine model. Changes in brain ceramide and sphingomyelin levels, Tau content, histopathology, and nSMase2 target engagement were monitored, as well as changes in the number of brain-derived EVs in plasma and their Tau content. Additionally, we evaluated the ability of PDDC to impede tau propagation in a murine model where an adeno-associated virus(AAV) encoding for P301L/S320F double mutant human tau was stereotaxically-injected unilaterally into the hippocampus and the contralateral transfer to the dentate gyrus was monitored. Results: Similar to human AD, PS19 mice exhibited increased brain ceramides and nSMase2 activity; both were completely normalized by PDDC treatment. PS19 mice exhibited elevated tau immunostaining, thinning of hippocampal neuronal cell layers, increased mossy fiber synaptophysin immunostaining, and glial activation, all pathologic features of human AD. PDDC treatment significantly attenuated these aberrant changes. Mouse plasma isolated from PDDC-treated PS19 mice exhibited reduced levels of neuron- and microglia-derived EVs, the former carrying lower phosphorylated Tau(pTau) levels, compared to untreated mice. In the AAV tau propagation model, PDDC normalized the tau-induced increase in brain ceramides and significantly decreased tau spreading to the contralateral side. Conclusions: PDDC is a first-in-class therapeutic candidate that normalizes elevated brain ceramides and nSMase2 activity leading to the slowing of tau spread in AD mice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...