Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(2): e2301873, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38009788

RESUMO

Small voids in the absorber layer of thin-film solar cells are generally suspected to impair photovoltaic performance. They have been studied on Cu(In,Ga)Se2 cells with conventional laboratory techniques, albeit limited to surface characterization and often affected by sample-preparation artifacts. Here, synchrotron imaging is performed on a fully operational as-deposited solar cell containing a few tens of voids. By measuring operando current and X-ray excited optical luminescence, the local electrical and optical performance in the proximity of the voids are estimated, and via ptychographic tomography, the depth in the absorber of the voids is quantified. Besides, the complex network of material-deficit structures between the absorber and the top electrode is highlighted. Despite certain local impairments, the massive presence of voids in the absorber suggests they only have a limited detrimental impact on performance.

2.
Faraday Discuss ; 239(0): 160-179, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-35822496

RESUMO

We report a multi-modal study of the electrical, chemical and structural properties of a kesterite thin-film solar cell by combining the spatially-resolved X-ray beam induced current and fluorescence imaging techniques for the evaluation of a fully functional device on a cross-section. The data allowed the correlation of the chemical composition, defects at interfaces and inhomogeneous deposition of the layers with the local charge-collection efficiency of the device. We support our observations with Monte Carlo simulations of high-energy X-ray interactions with the semiconductor device, and finite-volume modeling of the charge-collection efficiency.

3.
PLoS One ; 12(7): e0181385, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28704515

RESUMO

Small-angle scattering (SAS) technique is applied to study the nano and microstructural properties of spatial patterns generated from chaos game representation (CGR). Using a simplified version of Debye formula, we calculate and analyze in momentum space, the monodisperse scattering structure factor from a system of randomly oriented and non-interacting 2D Sierpinski gaskets (SG). We show that within CGR approach, the main geometrical and fractal properties, such as the overall size, scaling factor, minimal distance between scattering units, fractal dimension and the number of units composing the SG, can be recovered. We confirm the numerical results, by developing a theoretical model which describes analytically the structure factor of SG. We apply our findings to scattering from single scale mass fractals, and respectively to a multiscale fractal representing DNA sequences, and for which an analytic description of the structure factor is not known a priori.


Assuntos
Fractais , Teoria dos Jogos , Dinâmica não Linear , Espalhamento a Baixo Ângulo , Algoritmos , Sequência de Bases , DNA , Interpretação Estatística de Dados , Análise de Sequência de DNA , Máquina de Vetores de Suporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...