Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell ; 171(1): 188-200.e16, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28867286

RESUMO

Actin filaments polymerizing against membranes power endocytosis, vesicular traffic, and cell motility. In vitro reconstitution studies suggest that the structure and the dynamics of actin networks respond to mechanical forces. We demonstrate that lamellipodial actin of migrating cells responds to mechanical load when membrane tension is modulated. In a steady state, migrating cell filaments assume the canonical dendritic geometry, defined by Arp2/3-generated 70° branch points. Increased tension triggers a dense network with a broadened range of angles, whereas decreased tension causes a shift to a sparse configuration dominated by filaments growing perpendicularly to the plasma membrane. We show that these responses emerge from the geometry of branched actin: when load per filament decreases, elongation speed increases and perpendicular filaments gradually outcompete others because they polymerize the shortest distance to the membrane, where they are protected from capping. This network-intrinsic geometrical adaptation mechanism tunes protrusive force in response to mechanical load.


Assuntos
Citoesqueleto de Actina/química , Citoesqueleto de Actina/ultraestrutura , Queratinócitos/ultraestrutura , Pseudópodes/química , Pseudópodes/ultraestrutura , Animais , Membrana Celular/química , Queratinócitos/química , Microscopia Eletrônica , Peixe-Zebra
2.
Nat Cell Biol ; 18(11): 1253-1259, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27775702

RESUMO

Most migrating cells extrude their front by the force of actin polymerization. Polymerization requires an initial nucleation step, which is mediated by factors establishing either parallel filaments in the case of filopodia or branched filaments that form the branched lamellipodial network. Branches are considered essential for regular cell motility and are initiated by the Arp2/3 complex, which in turn is activated by nucleation-promoting factors of the WASP and WAVE families. Here we employed rapid amoeboid crawling leukocytes and found that deletion of the WAVE complex eliminated actin branching and thus lamellipodia formation. The cells were left with parallel filaments at the leading edge, which translated, depending on the differentiation status of the cell, into a unipolar pointed cell shape or cells with multiple filopodia. Remarkably, unipolar cells migrated with increased speed and enormous directional persistence, while they were unable to turn towards chemotactic gradients. Cells with multiple filopodia retained chemotactic activity but their migration was progressively impaired with increasing geometrical complexity of the extracellular environment. These findings establish that diversified leading edge protrusions serve as explorative structures while they slow down actual locomotion.


Assuntos
Citoesqueleto de Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Movimento Celular/genética , Células Dendríticas/citologia , Leucócitos/citologia , Actinas/metabolismo , Animais , Camundongos , Camundongos Knockout , Polimerização , Pseudópodes/metabolismo
3.
Nat Commun ; 6: 8532, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26449415

RESUMO

Weak electric fields guide cell migration, known as galvanotaxis/electrotaxis. The sensor(s) cells use to detect the fields remain elusive. Here we perform a large-scale screen using an RNAi library targeting ion transporters in human cells. We identify 18 genes that show either defective or increased galvanotaxis after knockdown. Knockdown of the KCNJ15 gene (encoding inwardly rectifying K(+) channel Kir4.2) specifically abolishes galvanotaxis, without affecting basal motility and directional migration in a monolayer scratch assay. Depletion of cytoplasmic polyamines, highly positively charged small molecules that regulate Kir4.2 function, completely inhibits galvanotaxis, whereas increase of intracellular polyamines enhances galvanotaxis in a Kir4.2-dependent manner. Expression of a polyamine-binding defective mutant of KCNJ15 significantly decreases galvanotaxis. Knockdown or inhibition of KCNJ15 prevents phosphatidylinositol 3,4,5-triphosphate (PIP3) from distributing to the leading edge. Taken together these data suggest a previously unknown two-molecule sensing mechanism in which KCNJ15/Kir4.2 couples with polyamines in sensing weak electric fields.


Assuntos
Poliaminas/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Linhagem Celular Tumoral , Eletricidade , Humanos , Transporte de Íons , Canais de Potássio Corretores do Fluxo de Internalização/genética
4.
Biochem Soc Trans ; 43(1): 84-91, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25619250

RESUMO

Actin polymerization is harnessed by cells to generate lamellipodia for movement and by a subclass of pathogens to facilitate invasion of their infected hosts. Using electron tomography (ET), we have shown that lamellipodia are formed via the generation of subsets of actin filaments joined by branch junctions. Image averaging produced a 2.9 nm resolution model of branch junctions in situ and revealed a close fit to the electron density map of the actin-related protein 2/3 (Arp2/3)-actin complex in vitro. Correlated live-cell imaging and ET was also used to determine how actin networks are created and remodelled during the initiation and inhibition of protrusion in lamellipodia. Listeria, Rickettsia and viruses, such as vaccinia virus and baculovirus, exploit the actin machinery of host cells to generate propulsive actin comet tails to disseminate their infection. By applying ET, we have shown that baculovirus generates at its rear a fishbone-like array of subsets of branched actin filaments, with an average of only four filaments engaged in pushing at any one time. In both of these studies, the application of ET of negatively stained cytoskeletons for higher filament resolution and cryo-ET for preserving overall 3D morphology was crucial for obtaining a complete structure-function analysis of actin-driven propulsion.


Assuntos
Actinas/fisiologia , Actinas/ultraestrutura , Animais , Bactérias/ultraestrutura , Movimento Celular , Interações Hospedeiro-Patógeno , Humanos , Pseudópodes/metabolismo , Pseudópodes/ultraestrutura , Vírus/ultraestrutura
5.
Nat Commun ; 5: 3465, 2014 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-24632752

RESUMO

In cancers with a highly altered genome, distinct genetic alterations drive subsets rather than the majority of individual tumours. Here we use a sequential search across human tumour samples for transcript outlier data points with associated gene copy number variations that correlate with patient's survival to identify genes with pro-invasive functionality. Employing loss and gain of function approaches in vitro and in vivo, we show that one such gene, MTSS1, promotes the ability of melanocytic cells to metastasize and engages actin dynamics via Rho-GTPases and cofilin in this process. Indeed, high MTSS1 expression defines a subgroup of primary melanomas with unfavourable prognosis. These data underscore the biological, clinical and potential therapeutic implications of molecular subsets within genetically complex cancers.


Assuntos
Melanoma/metabolismo , Proteínas dos Microfilamentos/metabolismo , Metástase Neoplásica , Proteínas de Neoplasias/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Melanoma/genética , Melanoma/patologia , Camundongos Nus , Proteínas dos Microfilamentos/genética , Proteínas de Neoplasias/genética
6.
PLoS Biol ; 12(1): e1001765, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24453943

RESUMO

Several pathogens induce propulsive actin comet tails in cells they invade to disseminate their infection. They achieve this by recruiting factors for actin nucleation, the Arp2/3 complex, and polymerization regulators from the host cytoplasm. Owing to limited information on the structural organization of actin comets and in particular the spatial arrangement of filaments engaged in propulsion, the underlying mechanism of pathogen movement is currently speculative and controversial. Using electron tomography we have resolved the three-dimensional architecture of actin comet tails propelling baculovirus, the smallest pathogen yet known to hijack the actin motile machinery. Comet tail geometry was also mimicked in mixtures of virus capsids with purified actin and a minimal inventory of actin regulators. We demonstrate that propulsion is based on the assembly of a fishbone-like array of actin filaments organized in subsets linked by branch junctions, with an average of four filaments pushing the virus at any one time. Using an energy-minimizing function we have simulated the structure of actin comet tails as well as the tracks adopted by baculovirus in infected cells in vivo. The results from the simulations rule out gel squeezing models of propulsion and support those in which actin filaments are continuously tethered during branch nucleation and polymerization. Since Listeria monocytogenes, Shigella flexneri, and Vaccinia virus among other pathogens use the same common toolbox of components as baculovirus to move, we suggest they share the same principles of actin organization and mode of propulsion.


Assuntos
Citoesqueleto de Actina/ultraestrutura , Complexo 2-3 de Proteínas Relacionadas à Actina/ultraestrutura , Baculoviridae/ultraestrutura , Modelos Estatísticos , Citoesqueleto de Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Animais , Baculoviridae/química , Baculoviridae/fisiologia , Ensaio Cometa , Tomografia com Microscopia Eletrônica , Expressão Gênica , Genes Reporter , Carpa Dourada , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Melanoma Experimental , Células Sf9 , Spodoptera , Proteína Vermelha Fluorescente
7.
Proc Natl Acad Sci U S A ; 110(50): 20069-74, 2013 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-24277837

RESUMO

Fluorescence nanosectioning within a submicron region above an interface is desirable for many disciplines in the life sciences. A drawback, however, to most current approaches is the a priori need to physically scan a sculptured point spread function in the axial dimension, which can be undesirable for optically sensitive or highly dynamic samples. Here we demonstrate a fluorescence imaging approach that can overcome the need for scanning by exploiting the position-dependent emission spectrum of fluorophores above a simple biocompatible nanostructure. To achieve this we have designed a thin metal-dielectric-coated substrate, where the spectral modification to the total measured fluorescence can be used to estimate the axial fluorophore distribution within distances of 10-150 nm above the substrate with an accuracy of up to 5-10 nm. The modeling and feasibility of the approach are verified and successfully applied to elucidate nanoscale adhesion protein and filopodia dynamics in migrating cells. It is likely that the general principle can find broader applications in, for example, single-molecule studies, biosensing, and studying fast dynamic processes.


Assuntos
Movimento Celular/fisiologia , Metais/química , Microtomia/métodos , Nanoestruturas , Transferência Ressonante de Energia de Fluorescência , Microscopia/métodos , Modelos Teóricos
8.
Nature ; 503(7475): 281-4, 2013 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-24132237

RESUMO

Cell migration requires the generation of branched actin networks that power the protrusion of the plasma membrane in lamellipodia. The actin-related proteins 2 and 3 (Arp2/3) complex is the molecular machine that nucleates these branched actin networks. This machine is activated at the leading edge of migrating cells by Wiskott-Aldrich syndrome protein (WASP)-family verprolin-homologous protein (WAVE, also known as SCAR). The WAVE complex is itself directly activated by the small GTPase Rac, which induces lamellipodia. However, how cells regulate the directionality of migration is poorly understood. Here we identify a new protein, Arpin, that inhibits the Arp2/3 complex in vitro, and show that Rac signalling recruits and activates Arpin at the lamellipodial tip, like WAVE. Consistently, after depletion of the inhibitory Arpin, lamellipodia protrude faster and cells migrate faster. A major role of this inhibitory circuit, however, is to control directional persistence of migration. Indeed, Arpin depletion in both mammalian cells and Dictyostelium discoideum amoeba resulted in straighter trajectories, whereas Arpin microinjection in fish keratocytes, one of the most persistent systems of cell migration, induced these cells to turn. The coexistence of the Rac-Arpin-Arp2/3 inhibitory circuit with the Rac-WAVE-Arp2/3 activatory circuit can account for this conserved role of Arpin in steering cell migration.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Movimento Celular/genética , Pseudópodes/genética , Pseudópodes/metabolismo , Transdução de Sinais , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular , Dictyostelium/genética , Dictyostelium/metabolismo , Embrião não Mamífero , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Camundongos , Proteínas/genética , Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Peixe-Zebra/genética
9.
Mol Biol Cell ; 24(18): 2861-75, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23885122

RESUMO

Lamellipodia are sheet-like protrusions formed during migration or phagocytosis and comprise a network of actin filaments. Filament formation in this network is initiated by nucleation/branching through the actin-related protein 2/3 (Arp2/3) complex downstream of its activator, suppressor of cAMP receptor/WASP-family verprolin homologous (Scar/WAVE), but the relative relevance of Arp2/3-mediated branching versus actin filament elongation is unknown. Here we use instantaneous interference with Arp2/3 complex function in live fibroblasts with established lamellipodia. This allows direct examination of both the fate of elongating filaments upon instantaneous suppression of Arp2/3 complex activity and the consequences of this treatment on the dynamics of other lamellipodial regulators. We show that Arp2/3 complex is an essential organizer of treadmilling actin filament arrays but has little effect on the net rate of actin filament turnover at the cell periphery. In addition, Arp2/3 complex serves as key upstream factor for the recruitment of modulators of lamellipodia formation such as capping protein or cofilin. Arp2/3 complex is thus decisive for filament organization and geometry within the network not only by generating branches and novel filament ends, but also by directing capping or severing activities to the lamellipodium. Arp2/3 complex is also crucial to lamellipodia-based migration of keratocytes.


Assuntos
Proteínas de Capeamento de Actina/metabolismo , Fatores de Despolimerização de Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Membrana Celular/metabolismo , Células Epidérmicas , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Peixes , Camundongos , Microinjeções , Miosina Tipo II/metabolismo , Células NIH 3T3 , Estrutura Terciária de Proteína , Pseudópodes/metabolismo , Família de Proteínas da Síndrome de Wiskott-Aldrich/química , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo
10.
Neuron ; 76(6): 1091-107, 2012 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-23259946

RESUMO

Neurites are the characteristic structural element of neurons that will initiate brain connectivity and elaborate information. Early in development, neurons are spherical cells but this symmetry is broken through the initial formation of neurites. This fundamental step is thought to rely on actin and microtubule dynamics. However, it is unclear which aspects of the complex actin behavior control neuritogenesis and which molecular mechanisms are involved. Here, we demonstrate that augmented actin retrograde flow and protrusion dynamics facilitate neurite formation. Our data indicate that a single family of actin regulatory proteins, ADF/Cofilin, provides the required control of actin retrograde flow and dynamics to form neurites. In particular, the F-actin severing activity of ADF/Cofilin organizes space for the protrusion and bundling of microtubules, the backbone of neurites. Our data reveal how ADF/Cofilin organizes the cytoskeleton to drive actin retrograde flow and thus break the spherical shape of neurons.


Assuntos
Fatores de Despolimerização de Actina/fisiologia , Actinas/metabolismo , Forma Celular/fisiologia , Córtex Cerebral/embriologia , Destrina/fisiologia , Cones de Crescimento/metabolismo , Neuritos/metabolismo , Animais , Transporte Biológico , Processos de Crescimento Celular/fisiologia , Células Cultivadas , Córtex Cerebral/citologia , Hipocampo/citologia , Hipocampo/embriologia , Técnicas In Vitro , Camundongos , Camundongos Knockout , Microtúbulos/fisiologia , Neurogênese/fisiologia
11.
Cytometry A ; 81(6): 496-507, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22499256

RESUMO

Migration of motile cells on flat substrates is usually driven by the polymerization of a flat actin filament network. Theoretical models have made different predictions regarding the distribution of the filament orientation in the lamellipodium with respect to the direction of motion. Here we show how one can automatically reconstruct the orientation distribution of actin filaments in the lamellipodium of migrating keratocytes from electron microscopy tomography data. We use two different image analysis methods, an algorithm which explicitly extracts an abstract network representation and an analysis of the gray scale information based on the structure tensor. We show that the two approaches give similar results, both for simulated data and for electron microscopy tomography data from migrating keratocytes. For the lamellipodium at the leading edge of fast moving cells, we find an orientation distribution that is peaked at +35/-35 degrees. For the lamellipodium at the leading edge of slow moving cells as well as for the lamellipodium at the flanks of fast moving cells, one broad peak around 0 degree dominates the distribution.


Assuntos
Citoesqueleto de Actina/ultraestrutura , Movimento Celular/fisiologia , Fibroblastos/ultraestrutura , Pseudópodes/ultraestrutura , Citoesqueleto de Actina/química , Algoritmos , Animais , Tomografia com Microscopia Eletrônica , Fibroblastos/química , Cultura Primária de Células , Pseudópodes/química , Truta , Gravação em Vídeo
12.
J Mol Biol ; 419(5): 359-68, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-22459261

RESUMO

Actin filaments are polar structures that exhibit a fast growing plus end and a slow growing minus end. According to their organization in cells, in parallel or antiparallel arrays, they can serve, respectively, in protrusions or in contractions. The determination of actin filament polarity in subcellular compartments is therefore required to establish their local function. Myosin binding has previously been the sole method of polarity determination. Here, we report the first direct determination of actin filament polarity in the cell without myosin binding. Negatively stained cytoskeletons of lamellipodia were analyzed by adapting electron tomography and a single particle analysis for filamentous complexes. The results of the stained cytoskeletons confirmed that all actin filament ends facing the cell membrane were the barbed ends. In general, this approach should be applicable to the analysis of actin polarity in tomograms of the actin cytoskeleton.


Assuntos
Citoesqueleto de Actina/metabolismo , Polaridade Celular , Pseudópodes/fisiologia , Citoesqueleto de Actina/química , Animais , Tomografia com Microscopia Eletrônica/métodos , Fibroblastos/fisiologia , Coloração Negativa , Fenômenos Fisiológicos da Pele , Truta/fisiologia
13.
J Cell Sci ; 125(Pt 11): 2775-85, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22431015

RESUMO

Using correlated live-cell imaging and electron tomography we found that actin branch junctions in protruding and treadmilling lamellipodia are not concentrated at the front as previously supposed, but link actin filament subsets in which there is a continuum of distances from a junction to the filament plus ends, for up to at least 1 µm. When branch sites were observed closely spaced on the same filament their separation was commonly a multiple of the actin helical repeat of 36 nm. Image averaging of branch junctions in the tomograms yielded a model for the in vivo branch at 2.9 nm resolution, which was comparable with that derived for the in vitro actin-Arp2/3 complex. Lamellipodium initiation was monitored in an intracellular wound-healing model and was found to involve branching from the sides of actin filaments oriented parallel to the plasmalemma. Many filament plus ends, presumably capped, terminated behind the lamellipodium tip and localized on the dorsal and ventral surfaces of the actin network. These findings reveal how branching events initiate and maintain a network of actin filaments of variable length, and provide the first structural model of the branch junction in vivo. A possible role of filament capping in generating the lamellipodium leaflet is discussed and a mathematical model of protrusion is also presented.


Assuntos
Actinas/metabolismo , Pseudópodes/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Espaço Intracelular/metabolismo , Melanoma Experimental , Camundongos , Modelos Biológicos , Células NIH 3T3 , Pseudópodes/ultraestrutura , Proteínas rac de Ligação ao GTP/metabolismo
14.
J Struct Biol ; 178(1): 19-28, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22387240

RESUMO

The aim of this work was to develop a protocol for automated tracking of actin filaments in electron tomograms of lamellipodia embedded in negative stain. We show that a localized version of the Radon transform for the detection of filament directions enables three-dimensional visualizations of filament network architecture, facilitating extraction of statistical information including orientation profiles. We discuss the requirements for parameter selection set by the raw image data in the context of other, similar tracking protocols.


Assuntos
Citoesqueleto de Actina/ultraestrutura , Tomografia com Microscopia Eletrônica/métodos , Pseudópodes/ultraestrutura , Células 3T3 , Animais , Camundongos , Imagem Molecular/métodos , Coloração Negativa
15.
J Cell Sci ; 124(Pt 19): 3305-18, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21940796

RESUMO

Cells use a large repertoire of proteins to remodel the actin cytoskeleton. Depending on the proteins involved, F-actin is organized in specialized protrusions such as lamellipodia or filopodia, which serve diverse functions in cell migration and sensing. Although factors responsible for directed filament assembly in filopodia have been extensively characterized, the mechanisms of filament disassembly in these structures are mostly unknown. We investigated how the actin-depolymerizing factor cofilin-1 affects the dynamics of fascincrosslinked actin filaments in vitro and in live cells. By multicolor total internal reflection fluorescence microscopy and fluorimetric assays, we found that cofilin-mediated severing is enhanced in fascin-crosslinked bundles compared with isolated filaments, and that fascin and cofilin act synergistically in filament severing. Immunolabeling experiments demonstrated for the first time that besides its known localization in lamellipodia and membrane ruffles, endogenous cofilin can also accumulate in the tips and shafts of filopodia. Live-cell imaging of fluorescently tagged proteins revealed that cofilin is specifically targeted to filopodia upon stalling of protrusion and during their retraction. Subsequent electron tomography established filopodial actin filament and/or bundle fragmentation to precisely correlate with cofilin accumulation. These results identify a new mechanism of filopodium disassembly involving both fascin and cofilin.


Assuntos
Citoesqueleto de Actina/metabolismo , Fatores de Despolimerização de Actina/metabolismo , Proteínas de Transporte/metabolismo , Proteínas dos Microfilamentos/metabolismo , Multimerização Proteica , Pseudópodes/metabolismo , Animais , Linhagem Celular , Proteínas de Fluorescência Verde/metabolismo , Humanos , Cinética , Camundongos , Microscopia de Fluorescência , Faloidina/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Imagem com Lapso de Tempo
16.
PLoS One ; 6(5): e19931, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21603613

RESUMO

The actin cytoskeleton is continuously remodeled through cycles of actin filament assembly and disassembly. Filaments are born through nucleation and shaped into supramolecular structures with various essential functions. These range from contractile and protrusive assemblies in muscle and non-muscle cells to actin filament comets propelling vesicles or pathogens through the cytosol. Although nucleation has been extensively studied using purified proteins in vitro, dissection of the process in cells is complicated by the abundance and molecular complexity of actin filament arrays. We here describe the ectopic nucleation of actin filaments on the surface of microtubules, free of endogenous actin and interfering membrane or lipid. All major mechanisms of actin filament nucleation were recapitulated, including filament assembly induced by Arp2/3 complex, formin and Spir. This novel approach allows systematic dissection of actin nucleation in the cytosol of live cells, its genetic re-engineering as well as screening for new modifiers of the process.


Assuntos
Citoesqueleto de Actina/metabolismo , Microtúbulos/metabolismo , Actinas/metabolismo , Animais , Recuperação de Fluorescência Após Fotodegradação , Camundongos , Microscopia , Polimerização
17.
Trends Cell Biol ; 20(11): 628-33, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20833046

RESUMO

The primary event in the movement of a migrating eukaryotic cell is the extension of cytoplasmic sheets termed lamellipodia composed of networks of actin filaments. Lamellipodia networks are thought to arise through the branching of new filaments from the sides of old filaments, producing a dendritic array. Recent studies by electron tomography have revealed the three dimensional organization of lamellipodia and show, contrary to previous evidence, that actin filaments do not form dendritic arrays in vivo. These findings signal a reconsideration of the structural basis of protrusion and about the roles of the different actin nucleating and elongating complexes involved in the process.


Assuntos
Células Eucarióticas/ultraestrutura , Pseudópodes/ultraestrutura , Citoesqueleto de Actina/metabolismo , Animais , Movimento Celular , Tomografia com Microscopia Eletrônica , Humanos
18.
Nat Cell Biol ; 12(5): 429-35, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20418872

RESUMO

Eukaryotic cells can initiate movement using the forces exerted by polymerizing actin filaments to extend lamellipodial and filopodial protrusions. In the current model, actin filaments in lamellipodia are organized in a branched, dendritic network. We applied electron tomography to vitreously frozen 'live' cells, fixed cells and cytoskeletons, embedded in vitreous ice or in deep-negative stain. In lamellipodia from four cell types, including rapidly migrating fish keratocytes, we found that actin filaments are almost exclusively unbranched. The vast majority of apparent filament junctions proved to be overlapping filaments, rather than branched end-to-side junctions. Analysis of the tomograms revealed that actin filaments terminate at the membrane interface within a zone several hundred nanometres wide at the lamellipodium front, and yielded the first direct measurements of filament densities. Actin filament pairs were also identified as lamellipodium components and bundle precursors. These data provide a new structural basis for understanding actin-driven protrusion during cell migration.


Assuntos
Citoesqueleto de Actina/ultraestrutura , Tomografia com Microscopia Eletrônica/métodos , Pseudópodes/ultraestrutura , Actinas/fisiologia , Animais , Movimento Celular , Células Cultivadas , Microscopia Crioeletrônica , Citoesqueleto , Peixes , Humanos , Queratinócitos/citologia
20.
Mol Biol Cell ; 20(14): 3209-23, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19458196

RESUMO

Dynamic actin rearrangements are initiated and maintained by actin filament nucleators, including the Arp2/3-complex. This protein assembly is activated in vitro by distinct nucleation-promoting factors such as Wiskott-Aldrich syndrome protein/Scar family proteins or cortactin, but the relative in vivo functions of each of them remain controversial. Here, we report the conditional genetic disruption of murine cortactin, implicated previously in dynamic actin reorganizations driving lamellipodium protrusion and endocytosis. Unexpectedly, cortactin-deficient cells showed little changes in overall cell morphology and growth. Ultrastructural analyses and live-cell imaging studies revealed unimpaired lamellipodial architecture, Rac-induced protrusion, and actin network turnover, although actin assembly rates in the lamellipodium were modestly increased. In contrast, platelet-derived growth factor-induced actin reorganization and Rac activation were impaired in cortactin null cells. In addition, cortactin deficiency caused reduction of Cdc42 activity and defects in random and directed cell migration. Reduced migration of cortactin null cells could be restored, at least in part, by active Rac and Cdc42 variants. Finally, cortactin removal did not affect the efficiency of receptor-mediated endocytosis. Together, we conclude that cortactin is fully dispensable for Arp2/3-complex activation during lamellipodia protrusion or clathrin pit endocytosis. Furthermore, we propose that cortactin promotes cell migration indirectly, through contributing to activation of selected Rho-GTPases.


Assuntos
Actinas/metabolismo , Movimento Celular/efeitos dos fármacos , Cortactina/metabolismo , Fibroblastos/citologia , Fator de Crescimento Derivado de Plaquetas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteínas rho de Ligação ao GTP/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Animais , Clatrina/metabolismo , Cortactina/deficiência , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/enzimologia , Citoesqueleto/ultraestrutura , Endocitose/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/enzimologia , Fibroblastos/ultraestrutura , Técnicas de Inativação de Genes , Marcação de Genes , Humanos , Camundongos , Pseudópodes/efeitos dos fármacos , Pseudópodes/enzimologia , Pseudópodes/ultraestrutura , Fibras de Estresse/efeitos dos fármacos , Fibras de Estresse/enzimologia , Fibras de Estresse/ultraestrutura , Cicatrização/efeitos dos fármacos , Proteínas rac de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...