Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hepatology ; 59(5): 1750-60, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24038081

RESUMO

UNLABELLED: Mice deficient in small heterodimer partner (SHP) are protected from diet-induced hepatic steatosis resulting from increased fatty acid oxidation and decreased lipogenesis. The decreased lipogenesis appears to be a direct consequence of very low expression of peroxisome proliferator-activated receptor gamma 2 (PPAR-γ2), a potent lipogenic transcription factor, in the SHP(-/-) liver. The current study focused on the identification of a SHP-dependent regulatory cascade that controls PPAR-γ2 gene expression, thereby regulating hepatic fat accumulation. Illumina BeadChip array (Illumina, Inc., San Diego, CA) and real-time polymerase chain reaction were used to identify genes responsible for the linkage between SHP and PPAR-γ2 using hepatic RNAs isolated from SHP(-/-) and SHP-overexpressing mice. The initial efforts identify that hairy and enhancer of split 6 (Hes6), a novel transcriptional repressor, is an important mediator of the regulation of PPAR-γ2 transcription by SHP. The Hes6 promoter is specifically activated by the retinoic acid receptor (RAR) in response to its natural agonist ligand, all-trans retinoic acid (atRA), and is repressed by SHP. Hes6 subsequently represses hepatocyte nuclear factor 4 alpha (HNF-4α)-activated PPAR-γ2 gene expression by direct inhibition of HNF-4α transcriptional activity. Furthermore, we provide evidences that atRA treatment or adenovirus-mediated RAR-α overexpression significantly reduced hepatic fat accumulation in obese mouse models, as observed in earlier studies, and the beneficial effect is achieved by the proposed transcriptional cascade. CONCLUSIONS: Our study describes a novel transcriptional regulatory cascade controlling hepatic lipid metabolism that identifies retinoic acid signaling as a new therapeutic approach to nonalcoholic fatty liver diseases.


Assuntos
Fígado Gorduroso/tratamento farmacológico , PPAR gama/genética , Receptores Citoplasmáticos e Nucleares/fisiologia , Tretinoína/uso terapêutico , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Glicemia/análise , Fígado Gorduroso/metabolismo , Regulação da Expressão Gênica , Metabolismo dos Lipídeos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica , Receptores do Ácido Retinoico/fisiologia , Proteínas Repressoras/genética , Receptor alfa de Ácido Retinoico , Transcrição Gênica , Tretinoína/farmacologia
2.
J Biol Chem ; 283(32): 22147-56, 2008 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-18550547

RESUMO

Airway epithelial Na-K-2Cl (NKCC1) cotransport is activated through hormonal stimulation and hyperosmotic stress via a protein kinase C (PKC) delta-mediated intracellular signaling pathway. Down-regulation of PKCdelta prevents activation of NKCC1 expressed in Calu-3 cells. Previous studies of this signaling pathway identified coimmunoprecipitation of PKCdelta with SPAK (Ste20-related proline alanine-rich kinase). We hypothesize that endogenous PKCdelta activates SPAK, which subsequently activates NKCC1 through phosphorylation. Double-stranded silencing RNA directed against SPAK reduced SPAK protein expression by 65.8% and prevented increased phosphorylation of NKCC1 and functional activation of NKCC1 during hyperosmotic stress, measured as bumetanide-sensitive basolateral to apical (86)Rb flux. Using recombinant proteins, we demonstrate direct binding of PKCdelta to SPAK, PKCdelta-mediated activation of SPAK, binding of SPAK to the amino terminus of NKCC1 (NT-NKCC1, amino acids 1-286), and competitive inhibition of SPAK-NKCC1 binding by a peptide encoding a SPAK binding site on NT-NKCC1. The carboxyl terminus of SPAK (amino acids 316-548) pulls down endogenous NKCC1 from Calu-3 total cell lysates and glutathione S-transferase-tagged NT-NKCC1 pulls down endogenous SPAK. In intact cells, hyperosmotic stress increased phosphorylated PKCdelta, indicating activation of PKCdelta, and activity of endogenous SPAK kinase. Inhibition of PKCdelta activity with rottlerin blocked the increase in SPAK kinase activity. The results indicate that PKCdelta acts upstream of SPAK to increase activity of NKCC1 during hyperosmotic stress.


Assuntos
Células Epiteliais/metabolismo , Pulmão/citologia , Proteína Quinase C-delta/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Linhagem Celular , Regulação para Baixo , Células Epiteliais/enzimologia , Pressão Osmótica , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Membro 2 da Família 12 de Carreador de Soluto
3.
J Biol Chem ; 280(27): 25491-8, 2005 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-15899883

RESUMO

Activity of Na+-K+-2Cl- co-transport (NKCC1) in epithelia is thought to be highly regulated through phosphorylation and dephosphorylation of the transporter. Previous functional studies from this laboratory suggested a role for protein phosphatase 2A (PP2A) as a serine/threonine protein phosphatase involved in the regulation of mammalian tracheal epithelial NKCC1. We expand on these studies to characterize serine/threonine protein phosphatase(s) necessary for regulation of NKCC1 function and the interaction of the phosphatase(s) with proteins associated with NKCC1. NKCC1 activity was measured as bumetanide-sensitive 86Rb uptake or basolateral to apical 86Rb flux in primary cultures of human tracheal epithelial cells or in Calu-3 airway epithelial cells grown on Transwell filter inserts. Preincubation with 0.1 nm okadaic acid, a PP2A >> phosphatase 1 (PP1) inhibitor, increased NKCC1 activity 3.5-fold in human tracheal epithelial cells and 4.1-fold in Calu-3 cells. Calyculin, a PP1 >> PP2A inhibitor, did not alter NKCC1 activity or percent bumetanide-sensitive flux. The effect of OA was dose-dependent with an IC50 of 0.4 nm. The alpha1-adrenergic agonist methoxamine increased NKCC1 activity and transiently increased PP2A activity 3.8-fold but did not alter PP1 activity. OA augmented methoxamine-dependent stimulation of NKCC1 activity. PP1, PP2A, and PP2C but not PP2B were detected in lysates from Calu-3 cells by immunoblot analysis. PP1 was not detected in immunoprecipitates of NKCC1 and vice versa. PP2A co-immunoprecipitated with NKCC1 and protein kinase C-delta (PKC-delta) and was pulled down by a recombinant N terminus of NKCC1 consisting of amino acids 1-286. One novel finding is co-precipitation of STE20-related proline-alanine-rich kinase, a regulatory kinase for NKCC1, with PP2A and PKC-delta. The results suggest a model of actin serving as a scaffold for binding and association of PKC-delta, PP2A, and STE20-related proline-alanine-rich kinase. The role of the complex of serine/threonine protein kinases and a protein phosphatase is probably the maintenance of optimal phosphorylation of NKCC1 coincident with its physiological function in epithelial absorption and secretion.


Assuntos
Fosfoproteínas Fosfatases/metabolismo , Mucosa Respiratória/enzimologia , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Actinas/metabolismo , Agonistas alfa-Adrenérgicos/farmacologia , Transporte Biológico/fisiologia , Linhagem Celular , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Humanos , Imunoprecipitação , Metoxamina/farmacologia , Ácido Okadáico/farmacologia , Fosfoproteínas Fosfatases/antagonistas & inibidores , Proteína Quinase C/metabolismo , Proteína Quinase C-delta , Proteína Fosfatase 1 , Proteína Fosfatase 2 , Proteínas Serina-Treonina Quinases/metabolismo , Mucosa Respiratória/citologia , Membro 2 da Família 12 de Carreador de Soluto , Traqueia/citologia
4.
Am J Physiol Cell Physiol ; 288(4): C906-12, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15590896

RESUMO

Direct binding of nonmuscle F-actin and the C2-like domain of PKC-delta (deltaC2-like domain) is involved in hormone-mediated activation of epithelial Na-K-2Cl cotransporter isoform 1 (NKCC1) in a Calu-3 airway epithelial cell line. The goal of this study was to determine the site of actin binding on the 123-amino acid deltaC2-like domain. Truncations of the deltaC2-like domain were made by restriction digestion and confirmed by nucleotide sequencing. His6-tagged peptides were expressed in bacteria, purified, and analyzed with a Coomassie blue stain for predicted size and either a 6xHis protein tag stain or an INDIA His6 probe for expression of the His6 tag. Truncated peptides were tested for competitive inhibition of binding of activated, recombinant PKC-delta with nonmuscle F-actin. Peptides from the NH2-terminal region, but not the COOH-terminal region, of the deltaC2-like domain blocked binding of activated PKC-delta to F-actin. The deltaC2-like domain and three NH2-terminal truncated peptides of 17, 83, or 108 amino acids blocked binding, with IC50 values ranging from 1.2 to 2.2 nmol (6-11 microM). NH2-terminal deltaC2-like peptides also prevented methoxamine-stimulated NKCC1 activation and pulled down endogenous actin from Calu-3 cells. The proximal NH2 terminus of the deltaC2-like domain encodes a beta1-sheet region. The amino acid sequence of the actin-binding domain is distinct from actin-binding domains in other PKC isotypes and actin-binding proteins. Our results indicate that F-actin likely binds to the beta1-sheet region of the deltaC2-like domain in airway epithelial cells.


Assuntos
Actinas/metabolismo , Proteína Quinase C/química , Proteína Quinase C/metabolismo , Mucosa Respiratória/metabolismo , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação/fisiologia , Ligação Competitiva/fisiologia , Linhagem Celular , Ativação Enzimática/fisiologia , Humanos , Dados de Sequência Molecular , Peptídeos/metabolismo , Ligação Proteica/fisiologia , Membro 2 da Família 12 de Carreador de Soluto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA