Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 448: 130926, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36764258

RESUMO

While per- and polyfluoroalkyl substances (PFAS) have been reported extensively in municipal solid waste (MSW) landfill leachate,they have rarely been quantified in landfill gas or in discrete landfill liquids such as landfill gas condensate (LGC), and the potential for PFAS to partition to the condensate has not been reported. LGC and leachate collected from within gas wells known as gas well pump-out (GWP) from three MSW landfills underwent physical-chemical characterization and PFAS analysis to improve understanding of the conditions under which these liquids form and to illuminate PFAS behavior within landfills. LGC was observed to be clear liquid containing ammonia and alkalinity while GWP strongly resembled leachate - dark in color, high in chloride and ammonia. Notably, arsenic and antimony were found in concentrations exceeding regulatory thresholds by over two orders of magnitude in many LGC samples. LGC contained a lower average concentration of ΣPFAS (19,000 ng L) compared to GWP (56,000 ng L); however, LGC contained more diversity of PFAS, with 53 quantified compared to 44 in GWP. LGC contained proportionally more precursor PFAS than GWP, including more semi-volatile PFAS which are rarely measured in water matrices, such as fluorotelomer alcohols and perfluoroalkane sulfonamido ethanols. This study provides the first detailed comparison of these matrices to inform timely leachate management decisions.

2.
Chemosphere ; 307(Pt 2): 135739, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35850227

RESUMO

Antimony is used extensively in consumer goods, including single use plastic bottles, electronics, textiles and automobile brakes, which are disposed of in landfills at the end of their service lives. As a result, Sb is a constituent of concern in landfill emissions. Previous research has focused on leachate (liquid) and waste incineration flue gas emissions; however, Sb has the potential to volatilize through chemical and microbial processes within a landfill. In this study, iron-amended granular activated carbon was used to adsorb volatile metals directly from gas in a full-scale landfill gas collection system. Metals were quantified using acid digestion and ICP-AES analysis. Antimony concentrations far exceeded those previously reported, at up to 733 µg m-3 (mean: 254 µg m-3). In addition to Sb, As was also measured at high levels compared to previous research, as high as 740 µg m-3 (mean: 178 µg m-3). Using US EPA landfill and landfill gas databases, total Sb emissions via landfill gas are estimated to be approximately 27.3 kg day-1 in the US. Based on other estimates of national and global Sb emissions, this corresponds to approximately 4.5% of total US atmospheric emissions of Sb and 0.42% of global atmospheric emissions. Sb mass release via landfill gas is approximately 3.9 times higher than via leachate emissions. Although gas emissions are higher than expected, the vast majority (99.9%) of Sb present in landfilled MSW remains within the waste mass indefinitely. In addition to these mass release estimates, this experiment suggests that iron-amended activated carbon may offer significant metals removal from LFG, especially in the first months of new well operation.


Assuntos
Arsênio , Eliminação de Resíduos , Antimônio , Carvão Vegetal , Ferro , Metano/análise , Plásticos , Instalações de Eliminação de Resíduos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...