Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
J Virol ; : e0027324, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775481

RESUMO

TIGIT is a negative immune checkpoint receptor associated with T cell exhaustion in cancer and HIV. TIGIT upregulation in virus-specific CD8+ T cells and NK cells during HIV/SIV infection results in dysfunctional effector capabilities. In vitro studies targeting TIGIT on CD8+ T cells suggest TIGIT blockade as a viable strategy to restore SIV-specific T cell responses. Here, we extend these studies in vivo using TIGIT blockage in nonhuman primates in an effort to reverse T cell and NK cell exhaustion in the setting of SIV infection. We demonstrate that in vivo administration of a humanized anti-TIGIT monoclonal antibody (mAb) is well tolerated in both cynomolgus macaques and rhesus macaques. Despite sustained plasma concentrations of anti-TIGIT mAb, we observed no consistent improvement in NK or T cell cytolytic capacity. TIGIT blockade minimally enhanced T cell proliferation and virus-specific T cell responses in both magnitude and breadth though plasma viral loads in treated animals remained stable indicating that anti-TIGIT mAb treatment alone was insufficient to increase anti-SIV CD8+ T cell function. The enhancement of virus-specific T cell proliferative responses observed in vitro with single or dual blockade of TIGIT and/or PD-1 highlights TIGIT as a potential target to reverse T cell dysfunction. Our studies, however, reveal that targeting the TIGIT pathway alone may be insufficient in the setting of viremia and that combining immune checkpoint blockade with other immunotherapeutics may be a future path forward for improved viral control or elimination of HIV.IMPORTANCEUpregulation of the immune checkpoint receptor TIGIT is associated with HIV-mediated T cell dysfunction and correlates with HIV disease progression. Compelling evidence exists for targeting immune checkpoint receptor pathways that would potentially enhance immunity and refocus effector cell efforts toward viral clearance. In this report, we investigate TIGIT blockade as an immunotherapeutic approach to reverse immune exhaustion during chronic SIV/SHIV infection in a nonhuman primate model of HIV infection. We show that interfering with the TIGIT signaling axis alone is insufficient to improve viral control despite modest improvement in T cell immunity. Our data substantiate the use of targeting multiple immune checkpoint receptors to promote synergy and ultimately eliminate HIV-infected cells.

2.
J Clin Invest ; 134(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557496

RESUMO

Programmed cell death protein 1 (PD-1) is an immune checkpoint marker commonly expressed on memory T cells and enriched in latently HIV-infected CD4+ T cells. We engineered an anti-PD-1 chimeric antigen receptor (CAR) to assess the impact of PD-1 depletion on viral reservoirs and rebound dynamics in SIVmac239-infected rhesus macaques (RMs). Adoptive transfer of anti-PD-1 CAR T cells was done in 2 SIV-naive and 4 SIV-infected RMs on antiretroviral therapy (ART). In 3 of 6 RMs, anti-PD-1 CAR T cells expanded and persisted for up to 100 days concomitant with the depletion of PD-1+ memory T cells in blood and tissues, including lymph node CD4+ follicular helper T (TFH) cells. Loss of TFH cells was associated with depletion of detectable SIV RNA from the germinal center (GC). However, following CAR T infusion and ART interruption, there was a marked increase in SIV replication in extrafollicular portions of lymph nodes, a 2-log higher plasma viremia relative to controls, and accelerated disease progression associated with the depletion of CD8+ memory T cells. These data indicate anti-PD-1 CAR T cells depleted PD-1+ T cells, including GC TFH cells, and eradicated SIV from this immunological sanctuary.


Assuntos
Linfócitos T CD4-Positivos , Receptores de Antígenos Quiméricos , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Linfócitos T CD4-Positivos/imunologia , Centro Germinativo/imunologia , Infecções por HIV/terapia , Macaca mulatta/metabolismo , Receptor de Morte Celular Programada 1 , Receptores de Antígenos Quiméricos/genética , Síndrome de Imunodeficiência Adquirida dos Símios/terapia
3.
PLoS Pathog ; 20(4): e1012135, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38593120

RESUMO

The rebound competent viral reservoir (RCVR)-virus that persists during antiretroviral treatment (ART) and can reignite systemic infection when treatment is stopped-is the primary barrier to eradicating HIV. We used time to initiation of ART during primary infection of rhesus macaques (RMs) after intravenous challenge with barcoded SIVmac239 as a means to elucidate the dynamics of RCVR establishment in groups of RMs by creating a multi-log range of pre-ART viral loads and then assessed viral time-to-rebound and reactivation rates resulting from the discontinuation of ART after one year. RMs started on ART on days 3, 4, 5, 6, 7, 9 or 12 post-infection showed a nearly 10-fold difference in pre-ART viral measurements for successive ART-initiation timepoints. Only 1 of 8 RMs initiating ART on days 3 and 4 rebounded after ART interruption despite measurable pre-ART plasma viremia. Rebounding plasma from the 1 rebounding RM contained only a single barcode lineage detected at day 50 post-ART. All RMs starting ART on days 5 and 6 rebounded between 14- and 50-days post-ART with 1-2 rebounding variants each. RMs starting ART on days 7, 9, and 12 had similar time-to-measurable plasma rebound kinetics despite multiple log differences in pre-ART plasma viral load (pVL), with all RMs rebounding between 7- and 16-days post-ART with 3-28 rebounding lineages. Calculated reactivation rates per pre-ART pVL were highest for RMs starting ART on days 5, 6, and 7 after which the rate of accumulation of the RCVR markedly decreased for RMs treated on days 9 and 12, consistent with multiphasic establishment and near saturation of the RCVR within 2 weeks post infection. Taken together, these data highlight the heterogeneity of the RCVR between RMs, the stochastic establishment of the very early RCVR, and the saturability of the RCVR prior to peak viral infection.


Assuntos
Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Vírus da Imunodeficiência Símia/fisiologia , Macaca mulatta , Replicação Viral , Antirretrovirais/uso terapêutico , Antirretrovirais/farmacologia , Infecções por HIV/tratamento farmacológico , Carga Viral
4.
Viruses ; 16(2)2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38400071

RESUMO

Metabolic-dysfunction-associated fatty liver disease (MAFLD) is a major cause of morbidity and mortality in HIV-infected individuals, even those receiving optimal antiretroviral therapy. Here, we utilized the SIV rhesus macaque model and advanced laparoscopic techniques for longitudinal collection of liver tissue to elucidate the timing of pathologic changes. The livers of both SIV-infected (N = 9) and SIV-naïve uninfected (N = 8) macaques were biopsied and evaluated at four time points (weeks -4, 2, 6, and 16-20 post-infection) and at necropsy (week 32). SIV DNA within the macaques' livers varied by over 4 logs at necropsy, and liver SIV DNA significantly correlated with SIV RNA in the plasma throughout the study. Acute phase liver pathology (2 weeks post-infection) was characterized by evidence for fat accumulation (microvesicular steatosis), a transient elevation in both AST and cholesterol levels within the serum, and increased hepatic expression of the PPARA gene associated with cholesterol metabolism and beta oxidation. By contrast, the chronic phase of the SIV infection (32 weeks post-infection) was associated with sinusoidal dilatation, while steatosis resolved and concentrations of AST and cholesterol remained similar to those in uninfected macaques. These findings suggest differential liver pathologies associated with the acute and chronic phases of infection and the possibility that therapeutic interventions targeting metabolic function may benefit liver health in people newly diagnosed with HIV.


Assuntos
Fígado Gorduroso , Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Humanos , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Macaca mulatta , Infecções por HIV/complicações , Hepatócitos/metabolismo , DNA , Colesterol
6.
PLoS Negl Trop Dis ; 17(11): e0011742, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37983245

RESUMO

Mayaro virus (MAYV) is a mosquito-transmitted alphavirus that causes debilitating and persistent arthritogenic disease. While MAYV was previously reported to infect non-human primates (NHP), characterization of MAYV pathogenesis is currently lacking. Therefore, in this study we characterized MAYV infection and immunity in rhesus macaques. To inform the selection of a viral strain for NHP experiments, we evaluated five MAYV strains in C57BL/6 mice and showed that MAYV strain BeAr505411 induced robust tissue dissemination and disease. Three male rhesus macaques were subcutaneously challenged with 105 plaque-forming units of this strain into the arms. Peak plasma viremia occurred at 2 days post-infection (dpi). NHPs were taken to necropsy at 10 dpi to assess viral dissemination, which included the muscles and joints, lymphoid tissues, major organs, male reproductive tissues, as well as peripheral and central nervous system tissues. Histological examination demonstrated that MAYV infection was associated with appendicular joint and muscle inflammation as well as presence of perivascular inflammation in a wide variety of tissues. One animal developed a maculopapular rash and two NHP had viral RNA detected in upper torso skin samples, which was associated with the presence of perivascular and perifollicular lymphocytic aggregation. Analysis of longitudinal peripheral blood samples indicated a robust innate and adaptive immune activation, including the presence of anti-MAYV neutralizing antibodies with activity against related Una virus and chikungunya virus. Inflammatory cytokines and monocyte activation also peaked coincident with viremia, which was well supported by our transcriptomic analysis highlighting enrichment of interferon signaling and other antiviral processes at 2 days post MAYV infection. The rhesus macaque model of MAYV infection recapitulates many of the aspects of human infection and is poised to facilitate the evaluation of novel therapies and vaccines targeting this re-emerging virus.


Assuntos
Infecções por Alphavirus , Alphavirus , Vírus Chikungunya , Animais , Camundongos , Masculino , Macaca mulatta , Viremia , Camundongos Endogâmicos C57BL , Anticorpos Antivirais
7.
Front Immunol ; 14: 1244637, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37675101

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) is a S. aureus strain with resistance to beta-lactam antibiotics, making it a global human and veterinary health concern. Specifically, immunosuppressed patients have a remarkably higher risk of clinical MRSA infections with significantly increased rates of prolonged clinical recovery, morbidity, and mortality. The current treatment of choice for MRSA is vancomycin. Importantly, we report the first known vancomycin-resistant S. aureus (VRSA) carriers in a cohort of Mauritian cynomolgus macaques (CM) imported to the Oregon National Primate Research Center (ONPRC), with a MRSA carrier rate of 76.9% (10/13 animals). All MRSA isolates also demonstrated resistance to vancomycin with prevalence of vancomycin-intermediate Staphylococcus aureus (VISA) at 30% (3/10 MRSA-positive CMs) and VRSA at 70% (7/10 MRSA-positive CMs). Additionally, we identified VRSA in a rhesus macaque (RM) housed within the same room as the VRSA-positive CMs and identified a MRSA/VISA carrier rate of 18.8% in RMs (3/16 positive for both MRSA and VISA) in unexposed recently assigned animals directly from the ONPRC RM breeding colony. Considering that the MRSA and VRSA/VISA-positive CMs future study aims included significant immunosuppression, MRSA/VRSA/VISA decolonization treatment and expanded "MRSA-free" practices were employed to maintain this status. We report the first controlled study using in-depth analyses with appropriate diagnostic serial testing to definitively show an MRSA decolonization therapy (90% success rate) and expanded barrier practice techniques to successfully prevent recolonization (100%) of a cohort of CMs MRSA-free (up to 529 days with a total of 4,806 MRSA-free NHP days).


Assuntos
Staphylococcus aureus Resistente à Meticilina , Animais , Humanos , Macaca fascicularis , Resistência a Vancomicina , Macaca mulatta , Staphylococcus aureus , Vancomicina/farmacologia , Vancomicina/uso terapêutico
9.
Immunity ; 56(7): 1649-1663.e5, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37236188

RESUMO

Allogeneic hematopoietic stem cell transplantation (alloHSCT) from donors lacking C-C chemokine receptor 5 (CCR5Δ32/Δ32) can cure HIV, yet mechanisms remain speculative. To define how alloHSCT mediates HIV cure, we performed MHC-matched alloHSCT in SIV+, anti-retroviral therapy (ART)-suppressed Mauritian cynomolgus macaques (MCMs) and demonstrated that allogeneic immunity was the major driver of reservoir clearance, occurring first in peripheral blood, then peripheral lymph nodes, and finally in mesenteric lymph nodes draining the gastrointestinal tract. While allogeneic immunity could extirpate the latent viral reservoir and did so in two alloHSCT-recipient MCMs that remained aviremic >2.5 years after stopping ART, in other cases, it was insufficient without protection of engrafting cells afforded by CCR5-deficiency, as CCR5-tropic virus spread to donor CD4+ T cells despite full ART suppression. These data demonstrate the individual contributions of allogeneic immunity and CCR5 deficiency to HIV cure and support defining targets of alloimmunity for curative strategies independent of HSCT.


Assuntos
Infecções por HIV , Transplante de Células-Tronco Hematopoéticas , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Macaca fascicularis , Carga Viral
11.
Sci Transl Med ; 15(689): eade5795, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36989376

RESUMO

Yellow fever virus (YFV) is a reemerging global health threat, driven by several factors, including increased spread of the mosquito vector and rapid urbanization. Although a prophylactic vaccine exists, vaccine hesitancy, supply deficits, and distribution difficulties leave specific populations at risk of severe YFV disease, as evidenced by recent outbreaks in South America. To establish a treatment for patients with severe YFV infection, we tested 37 YFV-specific monoclonal antibodies isolated from vaccinated humans and identified two capable of potently neutralizing multiple pathogenic primary YFV isolates. Using both hamster and nonhuman primate models of lethal YFV infection, we demonstrate that a single administration of either of these two potently neutralizing antibodies during acute infection fully controlled viremia and prevented severe disease and death in treated animals. Given the potential severity of YFV-induced disease, our results show that these antibodies could be effective in saving lives and fill a much-needed void in managing YFV cases during outbreaks.


Assuntos
Vacina contra Febre Amarela , Febre Amarela , Cricetinae , Animais , Humanos , Vírus da Febre Amarela , Anticorpos Neutralizantes/uso terapêutico , Vacina contra Febre Amarela/efeitos adversos , Febre Amarela/prevenção & controle , Anticorpos Antivirais/uso terapêutico , Anticorpos Monoclonais/uso terapêutico
12.
Comp Med ; 72(5): 287-297, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36162961

RESUMO

HIV-infected people develop reproducible disruptions in their gastrointestinal microbiota. Despite the suppression of HIV viremia via long-term antiretroviral therapy (ART), alterations still occur in gut microbial diversity and the commensal microbiota. Mounting evidence suggests these microbial changes lead to the development of gut dysbiosis-persistent inflammation that damages the gut mucosa-and correlate with various immune defects. In this study, we examined how early ART intervention influences microbial diversity in SIV-infected rhesus macaques. Using 16S rRNA sequencing, we defined the fecal microbiome in macaques given daily ART beginning on either 3 or 7 d after SIV infection (dpi) and characterized changes in composition, α diversity, and ß diversity from before infection through 112 dpi. The dominant phyla in the fecal samples before infection were Bacteroidetes, Firmicutes, Spirochaetes, and Proteobacteria. After SIV infection and ART, the relative abundance of Firmicutes and Bacteroidetes did not change significantly. Significant reductions in α diversity occurred across time when ART was initiated at 3 dpi but not at 7 dpi. Principal coordinate analysis of samples revealed a divergence in ß diversity in both treatment groups after SIV infection, with significant differences depending on the timing of ART administration. These results indicate that although administration of ART at 3 or 7 dpi did not substantially alter fecal microbial composition, the timing of early ART measurably altered phylogenetic diversity.


Assuntos
Infecções por HIV , Microbiota , Síndrome de Imunodeficiência Adquirida dos Símios , Animais , Macaca mulatta , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , RNA Ribossômico 16S/genética , Filogenia , Antirretrovirais/uso terapêutico , Antirretrovirais/farmacologia
13.
Cell Host Microbe ; 30(9): 1207-1218.e7, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35981532

RESUMO

Strain 68-1 rhesus cytomegalovirus expressing simian immunodeficiency virus (SIV) antigens (RhCMV/SIV) primes MHC-E-restricted CD8+ T cells that control SIV replication in 50%-60% of the vaccinated rhesus macaques. Whether this unconventional SIV-specific immunity and protection is unique to rhesus macaques or RhCMV or is intrinsic to CMV remains unknown. Here, using cynomolgus CMV vectors expressing SIV antigens (CyCMV/SIV) and Mauritian cynomolgus macaques, we demonstrate that the induction of MHC-E-restricted CD8+ T cells requires matching CMV to its host species. RhCMV does not elicit MHC-E-restricted CD8+ T cells in cynomolgus macaques. However, cynomolgus macaques vaccinated with species-matched 68-1-like CyCMV/SIV mounted MHC-E-restricted CD8+ T cells, and half of the vaccinees stringently controlled SIV post-challenge. Protected animals manifested a vaccine-induced IL-15 transcriptomic signature that is associated with efficacy in rhesus macaques. These findings demonstrate that the ability of species-matched CMV vectors to elicit MHC-E-restricted CD8+ T cells that are required for anti-SIV efficacy is conserved in nonhuman primates, and these data support the development of HCMV/HIV for a prophylactic HIV vaccine.


Assuntos
Vacinas contra a AIDS , Infecções por Citomegalovirus , Vacinas contra Citomegalovirus , Vacinas contra a SAIDS , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Linfócitos T CD8-Positivos , Citomegalovirus/genética , Interleucina-15 , Macaca fascicularis , Macaca mulatta
14.
J Med Primatol ; 51(5): 270-277, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35841132

RESUMO

BACKGROUND: Identification of lymph nodes (LNs) draining a specific site or in obese macaques can be challenging. METHODS: Indocyanine Green (ICG) was administered intradermal (ID), intramuscular, in the oral mucosa, or subserosal in the colon followed by Near Infrared (NIR) imaging. RESULTS: After optimization to maximize LN identification, intradermal ICG was successful in identifying 50-100% of the axillary/inguinal LN at a site. Using NIR, collection of peripheral and mesenteric LNs in obese macaques was 100% successful after traditional methods failed. Additionally, guided collection of LNs draining the site of intraepithelial or intramuscular immunization demonstrated significantly increased numbers of T follicular helper (Tfh) cells in germinal centers of draining compared to nondraining LNs. CONCLUSION: These imaging techniques optimize our ability to evaluate immune changes within LNs over time, even in obese macaques. This approach allows for targeted serial biopsies that permit confidence that draining LNs are being harvested throughout the study.


Assuntos
Verde de Indocianina , Linfonodos , Animais , Linfonodos/diagnóstico por imagem , Macaca mulatta , Obesidade
15.
Sci Immunol ; 7(72): eabn9301, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35714200

RESUMO

The strain 68-1 rhesus cytomegalovirus (RhCMV)-based vaccine for simian immunodeficiency virus (SIV) can stringently protect rhesus macaques (RMs) from SIV challenge by arresting viral replication early in primary infection. This vaccine elicits unconventional SIV-specific CD8+ T cells that recognize epitopes presented by major histocompatibility complex (MHC)-II and MHC-E instead of MHC-Ia. Although RhCMV/SIV vaccines based on strains that only elicit MHC-II- and/or MHC-Ia-restricted CD8+ T cells do not protect against SIV, it remains unclear whether MHC-E-restricted T cells are directly responsible for protection and whether these responses can be separated from the MHC-II-restricted component. Using host microRNA (miR)-mediated vector tropism restriction, we show that the priming of MHC-II and MHC-E epitope-targeted responses depended on vector infection of different nonoverlapping cell types in RMs. Selective inhibition of RhCMV infection in myeloid cells with miR-142-mediated tropism restriction eliminated MHC-E epitope-targeted CD8+ T cell priming, yielding an exclusively MHC-II epitope-targeted response. Inhibition with the endothelial cell-selective miR-126 eliminated MHC-II epitope-targeted CD8+ T cell priming, yielding an exclusively MHC-E epitope-targeted response. Dual miR-142 + miR-126-mediated tropism restriction reverted CD8+ T cell responses back to conventional MHC-Ia epitope targeting. Although the magnitude and differentiation state of these CD8+ T cell responses were generally similar, only the vectors programmed to elicit MHC-E-restricted CD8+ T cell responses provided protection against SIV challenge, directly demonstrating the essential role of these responses in RhCMV/SIV vaccine efficacy.


Assuntos
Vacinas contra Citomegalovirus , MicroRNAs , Vacinas contra a SAIDS , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Linfócitos T CD8-Positivos , Citomegalovirus/genética , Epitopos , Macaca mulatta , Complexo Principal de Histocompatibilidade , Células Mieloides , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Vírus da Imunodeficiência Símia/genética , Tropismo , Eficácia de Vacinas
16.
Nat Commun ; 13(1): 2995, 2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-35637225

RESUMO

Hepatitis B virus has infected a third of the world's population, and 296 million people are living with chronic infection. Chronic infection leads to progressive liver disease, including hepatocellular carcinoma and liver failure, and there remains no reliable curative therapy. These gaps in our understanding are due, in large part, to a paucity of animal models of HBV infection. Here, we show that rhesus macaques regularly clear acute HBV infection, similar to adult humans, but can develop long-term infection if immunosuppressed. Similar to patients, we longitudinally detected HBV DNA, HBV surface antigen, and HBV e antigen in the serum of experimentally infected animals. In addition, we discovered hallmarks of HBV infection in the liver, including RNA transcription, HBV core and HBV surface antigen translation, and covalently closed circular DNA biogenesis. This pre-clinical animal model will serve to accelerate emerging HBV curative therapies into the clinic.


Assuntos
Hepatite B Crônica , Hepatite B , Neoplasias Hepáticas , Animais , Antígenos de Superfície , Vírus da Hepatite B/genética , Humanos , Macaca mulatta
17.
PLoS One ; 17(4): e0266616, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35442982

RESUMO

Surgical antimicrobial prophylaxis is indicated when performing contaminated surgeries, when specific surgical implants are placed, and for prolonged surgical procedures. Unnecessary prophylactic antibiotics are often utilized for macaque surgeries, despite medical and veterinary guidelines. In this study we compared complication rates in macaques receiving peripheral lymph node (PLN) and laparoscopic biopsies, with and without antimicrobial prophylaxis. A majority of animals were SIV or SHIV infected at the time of surgery, so we also compared post-operative complication rates based on infection status. We found no significant difference in PLN biopsy complication rates for animals that received antimicrobial prophylaxis versus those that did not. Animals who underwent laparoscopic procedures and received prophylactic antibiotics had a higher complication rate than those who did not receive them. Complication rates did not differ significantly for SIV/SHIV infected versus uninfected animals for both laparoscopic biopsy procedures and PLN biopsy procedures. SIV/SHIV infected animals that underwent PLN biopsies had no significant difference in complication rates with and without antimicrobial prophylaxis, and SIV/SHIV infected animals receiving prophylactic antibiotics for laparoscopic biopsies had a higher complication rate than those that did not. This study suggests that perioperative prophylactic antibiotics have no role in the management of SIV/SHIV-infected and uninfected macaques undergoing clean, minimally invasive surgeries. Additionally, we recommend eliminating unnecessary antibiotic use in study animals due to their potential confounding impacts on research models and their potential to promote antimicrobial resistance.


Assuntos
Anti-Infecciosos , HIV-1 , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Antibacterianos/uso terapêutico , Anti-Infecciosos/uso terapêutico , Macaca fascicularis , Macaca mulatta , Estudos Retrospectivos , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Resultado do Tratamento
18.
PLoS Pathog ; 18(3): e1010396, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35358290

RESUMO

The CCR5-specific antibody Leronlimab is being investigated as a novel immunotherapy that can suppress HIV replication with minimal side effects. Here we studied the virological and immunological consequences of Leronlimab in chronically CCR5-tropic HIV-1 infected humans (n = 5) on suppressive antiretroviral therapy (ART) and in ART-naïve acutely CCR5-tropic SHIV infected rhesus macaques (n = 4). All five human participants transitioned from daily combination ART to self-administered weekly subcutaneous (SC) injections of 350 mg or 700 mg Leronlimab and to date all participants have sustained virologic suppression for over seven years. In all participants, Leronlimab fully occupied CCR5 receptors on peripheral blood CD4+ T cells and monocytes. In ART-naïve rhesus macaques acutely infected with CCR5-tropic SHIV, weekly SC injections of 50 mg/kg Leronlimab fully suppressed plasma viremia in half of the macaques. CCR5 receptor occupancy by Leronlimab occurred concomitant with rebound of CD4+ CCR5+ T-cells in peripheral blood, and full CCR5 receptor occupancy was found in multiple anatomical compartments. Our results demonstrate that weekly, self-administered Leronlimab was safe, well-tolerated, and efficacious for long-term virologic suppression and should be included in the arsenal of safe, easily administered, longer-acting antiretroviral treatments for people living with HIV-1. Trial Registration: ClinicalTrials.gov Identifiers: NCT02175680 and NCT02355184.


Assuntos
Vírus da Imunodeficiência Símia , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Anti-HIV , Humanos , Macaca mulatta , Receptores CCR5
19.
J Clin Invest ; 132(10)2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35316218

RESUMO

Proliferation of latently infected CD4+ T cells with replication-competent proviruses is an important mechanism contributing to HIV persistence during antiretroviral therapy (ART). One approach to targeting this latent cell expansion is to inhibit mTOR, a regulatory kinase involved with cell growth, metabolism, and proliferation. Here, we determined the effects of chronic mTOR inhibition with rapamycin with or without T cell activation in SIV-infected rhesus macaques (RMs) on ART. Rapamycin perturbed the expression of multiple genes and signaling pathways important for cellular proliferation and substantially decreased the frequency of proliferating CD4+ memory T cells (TM cells) in blood and tissues. However, levels of cell-associated SIV DNA and SIV RNA were not markedly different between rapamycin-treated RMs and controls during ART. T cell activation with an anti-CD3LALA antibody induced increases in SIV RNA in plasma of RMs on rapamycin, consistent with SIV production. However, upon ART cessation, both rapamycin and CD3LALA-treated and control-treated RMs rebounded in less than 12 days, with no difference in the time to viral rebound or post-ART viral load set points. These results indicate that, while rapamycin can decrease the proliferation of CD4+ TM cells, chronic mTOR inhibition alone or in combination with T cell activation was not sufficient to disrupt the stability of the SIV reservoir.


Assuntos
Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Antirretrovirais/farmacologia , Antirretrovirais/uso terapêutico , Linfócitos T CD4-Positivos , Proliferação de Células , Infecções por HIV/tratamento farmacológico , Macaca mulatta/genética , RNA , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/farmacologia , Carga Viral , Replicação Viral
20.
PLoS Pathog ; 18(1): e1010245, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35041707

RESUMO

Activation of the NF-κB signaling pathway by Protein Kinase C (PKC) agonists is a potent mechanism for human immunodeficiency virus (HIV) latency disruption in vitro. However, significant toxicity risks and the lack of evidence supporting their activity in vivo have limited further evaluation of PKC agonists as HIV latency-reversing agents (LRA) in cure strategies. Here we evaluated whether GSK445A, a stabilized ingenol-B derivative, can induce HIV/simian immunodeficiency virus (SIV) transcription and virus production in vitro and demonstrate pharmacological activity in nonhuman primates (NHP). CD4+ T cells from people living with HIV and from SIV+ rhesus macaques (RM) on antiretroviral therapy (ART) exposed in vitro to 25 nM of GSK445A produced cell-associated viral transcripts as well as viral particles at levels similar to those induced by PMA/Ionomycin, indicating that GSK445A can potently reverse HIV/SIV latency. Importantly, these concentrations of GSK445A did not impair the proliferation or survival of HIV-specific CD8+ T cells, but instead, increased their numbers and enhanced IFN-γ production in response to HIV peptides. In vivo, GSK445A tolerability was established in SIV-naïve RM at 15 µg/kg although tolerability was reduced in SIV-infected RM on ART. Increases in plasma viremia following GSK445A administration were suggestive of increased SIV transcription in vivo. Collectively, these results indicate that GSK445A is a potent HIV/SIV LRA in vitro and has a tolerable safety profile amenable for further evaluation in vivo in NHP models of HIV cure/remission.


Assuntos
Diterpenos/farmacologia , HIV , Proteína Quinase C/efeitos dos fármacos , Vírus da Imunodeficiência Símia , Ativação Viral/efeitos dos fármacos , Latência Viral/efeitos dos fármacos , Animais , Humanos , Macaca mulatta , Proteína Quinase C/metabolismo , RNA Viral/efeitos dos fármacos , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...