Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 239(3): 1051-1067, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291904

RESUMO

In the absence of light signals, Arabidopsis plants fail to develop the rosette habit typical for this species. Instead, plants display caulescent growth due to elongation of rosette internodes. This aspect of photomorphogenic development has been paid little attention and molecular events involved, downstream of photoreceptor signaling, remain to be identified. Using a combination of genetic and molecular approaches, we show that Arabidopsis rosette habit is a photomorphogenic trait controlled by induction of ARABIDOPSIS THALIANA HOMEOBOX GENE1 (ATH1) as downstream target of multiple photoreceptors. ATH1 induction prevents rosette internode elongation by maintaining the shoot apical meristem (SAM) rib zone area inactive and requires inactivation of photomorphogenesis inhibitors, including PHYTOCHROME INTERACTING FACTOR (PIF) proteins. ATH1 activity results in tissue-specific inhibition of PIF expression, establishing double-negative feedback-regulation at the SAM. Light-requirement for ATH1 expression can be overcome by high sugar availability to the SAM. Both sugar and light signals that induce ATH1 and, subsequently, rosette habit are mediated by TOR kinase. Collectively, our data reveal a SAM-specific, double-negative ATH1-PIF feedback loop at the basis of rosette habit. Upstream, TOR kinase functions as central hub integrating light and energy signals that control this for Arabidopsis quintessential trait.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Genes Homeobox , Fitocromo/metabolismo , Açúcares/metabolismo , Serina-Treonina Quinases TOR/metabolismo
2.
Plant J ; 106(6): 1523-1540, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33768644

RESUMO

Temperature passively affects biological processes involved in plant growth. Therefore, it is challenging to study the dedicated temperature signalling pathways that orchestrate thermomorphogenesis, a suite of elongation growth-based adaptations that enhance leaf-cooling capacity. We screened a chemical library for compounds that restored hypocotyl elongation in the pif4-2-deficient mutant background at warm temperature conditions in Arabidopsis thaliana to identify modulators of thermomorphogenesis. The small aromatic compound 'Heatin', containing 1-iminomethyl-2-naphthol as a pharmacophore, was selected as an enhancer of elongation growth. We show that ARABIDOPSIS ALDEHYDE OXIDASES redundantly contribute to Heatin-mediated hypocotyl elongation. Following a chemical proteomics approach, the members of the NITRILASE1-subfamily of auxin biosynthesis enzymes were identified among the molecular targets of Heatin. Our data reveal that nitrilases are involved in promotion of hypocotyl elongation in response to high temperature and Heatin-mediated hypocotyl elongation requires the NITRILASE1-subfamily members, NIT1 and NIT2. Heatin inhibits NIT1-subfamily enzymatic activity in vitro and the application of Heatin accordingly results in the accumulation of NIT1-subfamily substrate indole-3-acetonitrile in vivo. However, levels of the NIT1-subfamily product, bioactive auxin (indole-3-acetic acid), were also significantly increased. It is likely that the stimulation of hypocotyl elongation by Heatin might be independent of its observed interaction with NITRILASE1-subfamily members. However, nitrilases may contribute to the Heatin response by stimulating indole-3-acetic acid biosynthesis in an indirect way. Heatin and its functional analogues present novel chemical entities for studying auxin biology.


Assuntos
Aminoidrolases/metabolismo , Arabidopsis/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Hipocótilo/efeitos dos fármacos , Aldeído Oxidase/genética , Aldeído Oxidase/metabolismo , Aminoidrolases/genética , Apomorfina/análogos & derivados , Apomorfina/farmacologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/química , Herbicidas/farmacologia , Hipocótilo/crescimento & desenvolvimento , Ácidos Indolacéticos , Estrutura Molecular , Picloram/farmacologia , Relação Estrutura-Atividade , Transcriptoma/efeitos dos fármacos
3.
Mol Plant Microbe Interact ; 34(4): 439-447, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33400562

RESUMO

The induction of plant nutrient secretion systems is critical for successful pathogen infection. Some bacterial pathogens (e.g., Xanthomonas spp.) use transcription activator-like (TAL) effectors to induce transcription of SWEET sucrose efflux transporters. Pseudomonas syringae pv. tomato strain DC3000 lacks TAL effectors yet is able to induce multiple SWEETs in Arabidopsis thaliana by unknown mechanisms. Because bacteria require other nutrients in addition to sugars for efficient reproduction, we hypothesized that Pseudomonas spp. may depend on host transcription factors involved in secretory programs to increase access to essential nutrients. Bioinformatic analyses identified the Arabidopsis basic-leucine zipper transcription factor bZIP11 as a potential regulator of nutrient transporters, including SWEETs and UmamiT amino acid transporters. Inducible downregulation of bZIP11 expression in Arabidopsis resulted in reduced growth of P. syringae pv. tomato strain DC3000, whereas inducible overexpression of bZIP11 resulted in increased bacterial growth, supporting the hypothesis that bZIP11-regulated transcription programs are essential for maximal pathogen titer in leaves. Our data are consistent with a model in which a pathogen alters host transcription factor expression upstream of secretory transcription networks to promote nutrient efflux from host cells.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Solanum lycopersicum , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Bactérias/genética , Doenças das Plantas , Pseudomonas syringae , Fatores de Transcrição/genética
4.
Plant Physiol ; 184(2): 1083-1096, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32732351

RESUMO

O-Acetylation of polysaccharides predominantly modifies plant cell walls by changing the physicochemical properties and, consequently, the structure and function of the cell wall. Expression regulation and specific function of cell wall-acetylating enzymes remain to be fully understood. In this report, we cloned a previously identified stunted growth mutant named sucrose uncoupled1 (sun1) in Arabidopsis (Arabidopsis thaliana). SUN1 encodes a member of the TRICHOME BIREFRINGEN-LIKE family, AtTBL37 AtTBL37 is highly expressed in fast-growing plant tissues and encodes a Golgi apparatus-localized protein that regulates secondary cell wall thickening and acetylation. In sun1, jasmonate signaling and expression of downstream chemical defense genes, including VEGETATIVE STORAGE PROTEIN1 and BRANCHED-CHAIN AMINOTRANSFERASE4, are increased but, unexpectedly, sun1 is more susceptible to insect feeding. The central transcription factor in jasmonate signaling, MYC2, binds to and induces AtTBL37 expression. MYC2 also promotes the expression of many other TBLs Moreover, MYC activity enhances cell wall acetylation. Overexpression of AtTBL37 in the myc2-2 background reduces herbivore feeding. Our study highlights the role of O-acetylation in controlling plant cell wall properties, plant development, and herbivore defense.


Assuntos
Arabidopsis/genética , Arabidopsis/parasitologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Parede Celular/metabolismo , Herbivoria/genética , Insetos/parasitologia , Células Vegetais/metabolismo , Tricomas/metabolismo , Acetilação , Animais , Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Regulação da Expressão Gênica de Plantas , Variação Genética , Genótipo , Herbivoria/efeitos dos fármacos , Mutação , Tricomas/genética
6.
Proc Natl Acad Sci U S A ; 116(50): 25343-25354, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31767749

RESUMO

Many plant species respond to unfavorable high ambient temperatures by adjusting their vegetative body plan to facilitate cooling. This process is known as thermomorphogenesis and is induced by the phytohormone auxin. Here, we demonstrate that the chromatin-modifying enzyme HISTONE DEACETYLASE 9 (HDA9) mediates thermomorphogenesis but does not interfere with hypocotyl elongation during shade avoidance. HDA9 is stabilized in response to high temperature and mediates histone deacetylation at the YUCCA8 locus, a rate-limiting enzyme in auxin biosynthesis, at warm temperatures. We show that HDA9 permits net eviction of the H2A.Z histone variant from nucleosomes associated with YUCCA8, allowing binding and transcriptional activation by PHYTOCHROME INTERACTING FACTOR 4, followed by auxin accumulation and thermomorphogenesis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Histona Desacetilases/metabolismo , Histonas/metabolismo , Ácidos Indolacéticos/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas , Histona Desacetilases/genética , Histonas/genética , Temperatura Alta , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Ligação Proteica
7.
RNA ; 25(3): 292-304, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30567971

RESUMO

Eukaryotic mRNAs contain a 5' leader sequence preceding the main open reading frame (mORF) and, depending on the species, 20%-50% of eukaryotic mRNAs harbor an upstream ORF (uORF) in the 5' leader. An unknown fraction of these uORFs encode sequence conserved peptides (conserved peptide uORFs, CPuORFs). Experimentally validated CPuORFs demonstrated to regulate the translation of downstream mORFs often do so in a metabolite concentration-dependent manner. Previous research has shown that most CPuORFs possess a start codon context suboptimal for translation initiation, which turns out to be favorable for translational regulation. The suboptimal initiation context may even include non-AUG start codons, which makes CPuORFs hard to predict. For this reason, we developed a novel pipeline to identify CPuORFs unbiased of start codon using well-annotated sequence data from 31 eudicot plant species and rice. Our new pipeline was able to identify 29 novel Arabidopsis thaliana (Arabidopsis) CPuORFs, conserved across a wide variety of eudicot species of which 15 do not initiate with an AUG start codon. In addition to CPuORFs, the pipeline was able to find 14 conserved coding regions directly upstream and in frame with the mORF, which likely initiate translation on a non-AUG start codon. Altogether, our pipeline identified highly conserved coding regions in the 5' leaders of Arabidopsis transcripts, including in genes with proven functional importance such as LHY, a key regulator of the circadian clock, and the RAPTOR1 subunit of the target of rapamycin (TOR) kinase.


Assuntos
Regiões 5' não Traduzidas , Sequência de Aminoácidos , Arabidopsis/genética , Códon de Iniciação , Sequência Conservada , Fases de Leitura Aberta , RNA Mensageiro , Regulação da Expressão Gênica de Plantas , Filogenia , Biossíntese de Proteínas
8.
J Sci Food Agric ; 98(12): 4759-4768, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29573358

RESUMO

BACKGROUND: Since available arable land is limited and nitrogen fertilizers pollute the environment, cropping systems ought to be developed that do not rely on them. Here we investigate the rapidly growing, N2 -fixing Azolla/Nostoc symbiosis for its potential productivity and chemical composition to determine its potential as protein feed. RESULTS: In a small production system, cultures of Azolla pinnata and Azolla filiculoides were continuously harvested for over 100 days, yielding an average productivity of 90.0-97.2 kg dry weight (DW) ha-1 d-1 . Under ambient CO2 levels, N2 fixation by the fern's cyanobacterial symbionts accounted for all nitrogen in the biomass. Proteins made up 176-208 g kg-1 DW (4.9 × total nitrogen), depending on species and CO2 treatment, and contained more essential amino acids than protein from soybean. Elevated atmospheric CO2 concentrations (800 ppm) significantly boosted biomass production by 36-47%, without decreasing protein content. Choice of species and CO2 concentrations further affected the biomass content of lipids (79-100 g kg-1 DW) and (poly)phenols (21-69 g kg-1 DW). CONCLUSIONS: By continuous harvesting, high protein yields can be obtained from Azolla cultures, without the need for nitrogen fertilization. High levels of (poly)phenols likely contribute to limitations in the inclusion rate of Azolla in animal diets and need further investigation. © 2018 The Authors. Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Ração Animal/análise , Dióxido de Carbono/metabolismo , Nitrogênio/metabolismo , Proteínas de Plantas/análise , Traqueófitas/metabolismo , Fixação de Nitrogênio , Nostoc/fisiologia , Proteínas de Plantas/metabolismo , Simbiose , Traqueófitas/crescimento & desenvolvimento , Traqueófitas/microbiologia
9.
Nat Plants ; 3: 17023, 2017 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-28260795
11.
J Proteomics ; 128: 436-49, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26232565

RESUMO

Arabidopsis thaliana cytosolic ribosomes are large complexes containing eighty-one distinct ribosomal proteins (r-proteins), four ribosomal RNAs (rRNA) and a plethora of associated (non-ribosomal) proteins. In plants, r-proteins of cytosolic ribosomes are each encoded by two to seven different expressed and similar genes, forming an r-protein family. Distinctions in the r-protein coding sequences of gene family members are a source of variation between ribosomes. We performed proteomic investigation of actively translating cytosolic ribosomes purified using both immunopurification and a classic sucrose cushion centrifugation-based protocol from plants of different developmental stages. Both 1D and 2D LC-MS(E) with data-independent acquisition as well as conventional data-dependent MS/MS procedures were applied. This approach provided detailed identification of 165 r-protein paralogs with high coverage based on proteotypic peptides. The detected r-proteins were the products of the majority (68%) of the 242 cytosolic r-protein genes encoded by the genome. A total of 70 distinct r-proteins were identified. Based on these results and information from DNA microarray and ribosome footprint profiling studies a re-annotation of Arabidopsis r-proteins and genes is proposed. This compendium of the cytosolic r-protein proteome will serve as a template for future investigations on the dynamic structure and function of plant ribosomes. BIOLOGICAL SIGNIFICANCE: Translation is one of the most energy demanding processes in a living cell and is therefore carefully regulated. Translational activity is tightly linked to growth control and growth regulating mechanism. Recently established translational profiling technologies, including the profiling of mRNAs associated with polysomes and the mapping of ribosome footprints on mRNAs, have revealed that the expression of gene expression is often fine-tuned by differential translation of gene transcripts. The eukaryotic ribosome, the hub of these important processes, consists of close to eighty different proteins (depending on species) and four large RNAs assembled into two highly conserved subunits. In plants and to lesser extent in yeast, the r-proteins are encoded by more than one actively transcribed gene. As r-protein gene paralogs frequently do not encode identical proteins and are regulated by growth conditions and development, in vivo ribosomes are heterogeneous in their protein content. The regulatory and physiological importance of this heterogeneity is unknown. Here, an improved annotation of the more than two hundred r-protein genes of Arabidopsis is presented that combines proteomic and advanced mRNA expression data. This proteomic investigation and re-annotation of Arabidopsis ribosomes establish a base for future investigations of translational control in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Sequência de Aminoácidos , Perfilação da Expressão Gênica/métodos , Dados de Sequência Molecular , Proteoma/química , Proteoma/metabolismo
12.
BMC Plant Biol ; 14: 306, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25403240

RESUMO

BACKGROUND: Protein synthesis is a highly energy demanding process and is regulated according to cellular energy levels. Light and sugar availability affect mRNA translation in plant cells but the specific roles of these factors remain unclear. In this study, sucrose was applied to Arabidopsis seedlings kept in the light or in the dark, in order to distinguish sucrose and light effects on transcription and translation. These were studied using microarray analysis of steady-state mRNA and mRNA bound to translating ribosomes. RESULTS: Steady-state mRNA levels were affected differently by sucrose in the light and in the dark but general translation increased to a similar extent in both conditions. For a majority of the transcripts changes of the transcript levels were followed by changes in polysomal mRNA levels. However, for 243 mRNAs, a change in polysomal occupancy (defined as polysomal levels related to steady-state levels of the mRNA) was observed after sucrose treatment in the light, but not in the dark condition. Many of these mRNAs are annotated as encoding ribosomal proteins, supporting specific translational regulation of this group of transcripts. Unexpectedly, the numbers of ribosomes bound to each mRNA decreased for mRNAs with increased polysomal occupancy. CONCLUSIONS: Our results suggest that sucrose regulate translation of these 243 mRNAs specifically in the light, through a novel regulatory mechanism. Our data shows that increased polysomal occupancy is not necessarily leading to more ribosomes per transcript, suggesting a mechanism of translational induction not solely dependent on increased translation initiation rates.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Biossíntese de Proteínas , Transdução de Sinais , Sacarose/metabolismo , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Perfilação da Expressão Gênica , Luz , Análise de Sequência com Séries de Oligonucleotídeos , Polirribossomos/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Plântula/genética , Plântula/metabolismo , Plântula/efeitos da radiação
13.
Front Plant Sci ; 5: 113, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24723932
14.
PLoS Genet ; 10(3): e1004213, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24625790

RESUMO

Seedling establishment is inhibited on media containing high levels (∼ 6%) of glucose or fructose. Genetic loci that overcome the inhibition of seedling growth on high sugar have been identified using natural variation analysis and mutant selection, providing insight into sugar signaling pathways. In this study, a quantitative trait locus (QTL) analysis was performed for seedling sensitivity to high sugar in a Col/C24 F2 population of Arabidopsis thaliana. A glucose and fructose-sensing QTL, GSQ11, was mapped through selective genotyping and confirmed in near-isogenic lines in both Col and C24 backgrounds. Allelism tests and transgenic complementation showed that GSQ11 lies within the ANAC060 gene. The Col ANAC060 allele confers sugar insensitivity and was dominant over the sugar-sensitive C24 allele. Genomic and mRNA analyses showed that a single-nucleotide polymorphism (SNP) in Col ANAC060 affects the splicing patterns of ANAC060 such that 20 additional nucleotides are present in the mRNA. The insertion created a stop codon, resulting in a truncated ANAC60 protein lacking the transmembrane domain (TMD) that is present in the C24 ANAC060 protein. The absence of the TMD results in the nuclear localization of ANAC060. The short version of the ANAC060 protein is found in ∼ 12% of natural Arabidopsis accessions. Glucose induces GSQ11/ANAC060 expression in a process that requires abscisic acid (ABA) signaling. Chromatin immunoprecipitation-qPCR and transient expression analysis showed that ABI4 directly binds to the GSQ11/ANAC060 promoter to activate transcription. Interestingly, Col ANAC060 reduced ABA sensitivity and Glc-induced ABA accumulation, and ABI4 expression was also reduced in Col ANAC060 lines. Thus, the sugar-ABA signaling cascade induces ANAC060 expression, but the truncated Col ANAC060 protein attenuates ABA induction and ABA signaling. This negative feedback from nuclear ANAC060 on ABA signaling results in sugar insensitivity.


Assuntos
Proteínas de Arabidopsis/genética , Locos de Características Quantitativas/genética , Plântula/genética , Transdução de Sinais/genética , Fatores de Transcrição/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Frutose/metabolismo , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Genótipo , Glucose/metabolismo , Mutação , Fatores de Transcrição/metabolismo
15.
J Exp Bot ; 65(3): 799-807, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24453229

RESUMO

Sugars have a central regulatory function in steering plant growth. This review focuses on information presented in the past 2 years on key players in sugar-mediated plant growth regulation, with emphasis on trehalose 6-phosphate, target of rapamycin kinase, and Snf1-related kinase 1 regulatory systems. The regulation of protein synthesis by sugars is fundamental to plant growth control, and recent advances in our understanding of the regulation of translation by sugars will be discussed.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Transdução de Sinais , Fosfatos Açúcares/metabolismo , Trealose/análogos & derivados , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Biossíntese de Proteínas , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Trealose/metabolismo
16.
Trends Plant Sci ; 18(3): 125-32, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23182343

RESUMO

The ABSCISIC ACID INSENSITIVE4 (ABI4) gene was discovered to be an abscisic acid (ABA) signaling responsive transcription factor active during seed germination. The evolutionary history of the ABI4 gene supports its role as an ABA signaling intermediate in land plants. Investigating the ABI4 protein-cis element interaction supports the proposal that ABI4 binding to its known CE1 cis-element competes with transcription factor binding to the overlapping G-Box element. Recent publications report on ABI4 as a regulatory factor in diverse processes. In developing seedlings, ABI4 mediates sugar signaling, lipid breakdown, and plastid-to-nucleus signaling. Moreover, ABI4 is a regulator of rosette growth, redox signaling, cell wall metabolism and the effect of nitrate on lateral root development.


Assuntos
Ácido Abscísico/metabolismo , Embriófitas/genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Parede Celular/metabolismo , Embriófitas/crescimento & desenvolvimento , Embriófitas/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Germinação , Metabolismo dos Lipídeos , Lipídeos , Modelos Moleculares , Oxirredução , Filogenia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Estrutura Terciária de Proteína , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Transdução de Sinais , Fatores de Transcrição/genética
17.
Plant Physiol ; 160(4): 2083-92, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23085841

RESUMO

Dormancy is a state of metabolic arrest that facilitates the survival of organisms during environmental conditions incompatible with their regular course of life. Many organisms have deep dormant stages to promote an extended life span (increased longevity). In contrast, plants have seed dormancy and seed longevity described as two traits. Seed dormancy is defined as a temporary failure of a viable seed to germinate in conditions that favor germination, whereas seed longevity is defined as seed viability after dry storage (storability). In plants, the association of seed longevity with seed dormancy has not been studied in detail. This is surprising given the ecological, agronomical, and economic importance of seed longevity. We studied seed longevity to reveal its genetic regulators and its association with seed dormancy in Arabidopsis (Arabidopsis thaliana). Integrated quantitative trait locus analyses for seed longevity, in six recombinant inbred line populations, revealed five loci: Germination Ability After Storage1 (GAAS1) to GAAS5. GAAS loci colocated with seed dormancy loci, Delay Of Germination (DOG), earlier identified in the same six recombinant inbred line populations. Both GAAS loci and their colocation with DOG loci were validated by near isogenic lines. A negative correlation was observed, deep seed dormancy correlating with low seed longevity and vice versa. Detailed analysis on the collocating GAAS5 and DOG1 quantitative trait loci revealed that the DOG1-Cape Verde Islands allele both reduces seed longevity and increases seed dormancy. To our knowledge, this study is the first to report a negative correlation between seed longevity and seed dormancy.


Assuntos
Arabidopsis/genética , Arabidopsis/fisiologia , Variação Genética , Dormência de Plantas/genética , Sementes/crescimento & desenvolvimento , Sementes/genética , Ecótipo , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Loci Gênicos/genética , Endogamia , Fenótipo , Locos de Características Quantitativas/genética , Reprodutibilidade dos Testes , Transformação Genética
18.
Proteomics ; 12(7): 1024-38, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22522809

RESUMO

Cytosolic ribosomes are among the largest multisubunit cellular complexes. Arabidopsis thaliana ribosomes consist of 79 different ribosomal proteins (r-proteins) that each are encoded by two to six (paralogous) genes. It is unknown whether the paralogs are incorporated into the ribosome and whether the relative incorporation of r-protein paralogs varies in response to environmental cues. Immunopurified ribosomes were isolated from A. thaliana rosette leaves fed with sucrose. Trypsin digested samples were analyzed by qTOF-LC-MS using both MS(E) and classical MS/MS. Peptide features obtained by using these two methods were identified using MASCOT and Proteinlynx Global Server searching the theoretical sequences of A. thaliana proteins. The A. thaliana genome encodes 237 r-proteins and 69% of these were identified with proteotypic peptides for most of the identified proteins. These r-proteins were identified with average protein sequence coverage of 32% observed by MS(E) . Interestingly, the analysis shows that the abundance of r-protein paralogs in the ribosome changes in response to sucrose feeding. This is particularly evident for paralogous RPS3aA, RPS5A, RPL8B, and RACK1 proteins. These results show that protein synthesis in the A. thaliana cytosol involves a heterogeneous ribosomal population. The implications of these findings in the regulation of translation are discussed.


Assuntos
Proteínas de Arabidopsis/análise , Arabidopsis/metabolismo , Proteoma/análise , Proteoma/metabolismo , Proteínas Ribossômicas/análise , Sacarose/farmacologia , Sequência de Aminoácidos , Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Dados de Sequência Molecular , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/metabolismo , Análise de Componente Principal , Proteômica , RNA de Plantas/química , Proteínas Ribossômicas/metabolismo , Ribossomos/química , Sacarose/metabolismo , Espectrometria de Massas em Tandem
19.
Anal Bioanal Chem ; 403(5): 1353-60, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22451176

RESUMO

A hydrophilic-interaction chromatography (HILIC) method coupled to electrospray ionization mass spectrometry (ESI-MS) was developed for the determination of trehalose-6-phophate (Tre6P) in Arabidopsis thaliana seedlings. The method was optimized for MS detection and separation of Tre6P from its isomers, such as sucrose-6-phosphate, by testing eluent pH, type of organic solvent and alkalinizer, and gradient conditions. Tre6P could be resolved from matrix components within 28 min by using a water-acetonitrile gradient (0.2 ml/min) at pH 12 with piperidine as alkalinizer. The method was validated for concentrations between 25 and 4,000 nM Tre6P in A. thaliana seedling extracts. Seedlings were extracted with consecutive liquid-liquid and solid-phase extractions, and analyzed with HILIC-MS. Obtained accuracy (80-120 %) and precision (<24 %) demonstrated the suitability of HILIC-MS for determining Tre6P level variations in plants. The limit of detection (LOD) was 3.5 nM Tre6P in extracts corresponding to 4.1 pmol.g(-1) fresh plant weight (FW). This is a considerable improvement with respect to anion-exchange chromatography (AEC)-MS (40 nM) and capillary electrophoresis-MS (80 nM). Furthermore, HILIC-MS analysis times were shorter than with AEC-MS (30 and 60 min, respectively). The applicability of the HILIC-MS method was demonstrated by the analysis of extracts from seedlings grown on medium containing 100 mM sorbitol or trehalose, resulting in mean Tre6P concentrations of 0.2 and 1.9 nmol.g(-1) FW, respectively. Similar concentrations were found with AEC-MS. HILIC-MS was also evaluated at a high flow rate (2.0 ml/min). This high-speed method resolved the Suc6P and Tre6P peaks within 3 min yielding a detection limit of 1.3 nM Tre6P.


Assuntos
Arabidopsis/química , Cromatografia Líquida/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Fosfatos Açúcares/análise , Trealose/análogos & derivados , Plântula/química , Trealose/análise
20.
New Phytol ; 191(3): 733-745, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21534971

RESUMO

• The Arabidopsis basic region-leucine zipper transcription factor 11 (bZIP11) is known to be repressed by sucrose through a translational inhibition mechanism that requires the conserved sucrose control peptide encoded by the mRNA leader. The function of bZIP11 has been investigated in over-expression studies, and bZIP11 has been found to inhibit plant growth. The addition of sugar does not rescue the growth inhibition phenotype. Here, the function of the bZIP11 transcription factor was investigated. • The mechanism by which bZIP11 regulates growth was studied using large-scale and dedicated metabolic analysis, biochemical assays and molecular studies. • bZIP11 induction results in a reprogramming of metabolism and activation of genes involved in the metabolism of trehalose and other minor carbohydrates such as myo-inositol and raffinose. bZIP11 induction leads to reduced contents of the prominent growth regulatory molecule trehalose 6-phosphate (T6P). • The metabolic changes detected mimic in part those observed in carbon-starved plants. It is proposed that bZIP11 is a powerful regulator of carbohydrate metabolism that functions in a growth regulatory network that includes T6P and the sucrose non-fermenting-1 related protein kinase 1 (SnRK1).


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Sacarose/metabolismo , Trealose/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Genes de Plantas/genética , Inositol/metabolismo , Zíper de Leucina/genética , Raízes de Plantas/crescimento & desenvolvimento , Regiões Promotoras Genéticas/genética , Proteínas Serina-Treonina Quinases/metabolismo , Rafinose/biossíntese , Plântula/metabolismo , Transgenes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...