Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 2468, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37117218

RESUMO

Mechanical forces drive critical cellular processes that are reflected in mechanical phenotypes, or mechanotypes, of cells and their microenvironment. We present here "Rupture And Deliver" Tension Gauge Tethers (RAD-TGTs) in which flow cytometry is used to record the mechanical history of thousands of cells exerting forces on their surroundings via their propensity to rupture immobilized DNA duplex tension probes. We demonstrate that RAD-TGTs recapitulate prior DNA tension probe studies while also yielding a gain of fluorescence in the force-generating cell that is detectable by flow cytometry. Furthermore, the rupture propensity is altered following disruption of the cytoskeleton using drugs or CRISPR-knockout of mechanosensing proteins. Importantly, RAD-TGTs can differentiate distinct mechanotypes among mixed populations of cells. We also establish oligo rupture and delivery can be measured via DNA sequencing. RAD-TGTs provide a facile and powerful assay to enable high-throughput mechanotype profiling, which could find various applications, for example, in combination with CRISPR screens and -omics analysis.


Assuntos
Fenômenos Mecânicos , Proteínas , Sondas de DNA , Fenômenos Fisiológicos Celulares , DNA
2.
Nat Commun ; 12(1): 2437, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33893286

RESUMO

CRISPR-Cas9 cytidine and adenosine base editors (CBEs and ABEs) can disrupt genes without introducing double-stranded breaks by inactivating splice sites (BE-splice) or by introducing premature stop (pmSTOP) codons. However, no in-depth comparison of these methods or a modular tool for designing BE-splice sgRNAs exists. To address these needs, we develop SpliceR ( http://z.umn.edu/spliceR ) to design and rank BE-splice sgRNAs for any Ensembl annotated genome, and compared disruption approaches in T cells using a screen against the TCR-CD3 MHC Class I immune synapse. Among the targeted genes, we find that targeting splice-donors is the most reliable disruption method, followed by targeting splice-acceptors, and introducing pmSTOPs. Further, the CBE BE4 is more effective for disruption than the ABE ABE7.10, however this disparity is eliminated by employing ABE8e. Collectively, we demonstrate a robust method for gene disruption, accompanied by a modular design tool that is of use to basic and translational researchers alike.


Assuntos
Adenosina/metabolismo , Sistemas CRISPR-Cas , Biologia Computacional/métodos , Citidina/metabolismo , Edição de Genes/métodos , Adenosina/química , Sequência de Bases , Células Cultivadas , Citidina/química , Humanos , Internet , Células K562 , Reprodutibilidade dos Testes , Linfócitos T/citologia , Linfócitos T/metabolismo
3.
Mol Cancer Res ; 19(2): 329-345, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33172975

RESUMO

Protein tyrosine kinase 6 (PTK6; also called Brk) is overexpressed in 86% of patients with breast cancer; high PTK6 expression predicts poor outcome. We reported PTK6 induction by HIF/GR complexes in response to either cellular or host stress. However, PTK6-driven signaling events in the context of triple-negative breast cancer (TNBC) remain undefined. In a mouse model of TNBC, manipulation of PTK6 levels (i.e., via knock-out or add-back) had little effect on primary tumor volume, but altered lung metastasis. To delineate the mechanisms of PTK6 downstream signaling, we created kinase-dead (KM) and kinase-intact domain structure mutants of PTK6 via in-frame deletions of the N-terminal SH3 or SH2 domains. While the PTK6 kinase domain contributed to soft-agar colony formation, PTK6 kinase activity was entirely dispensable for cell migration. Specifically, TNBC models expressing a PTK6 variant lacking the SH2 domain (SH2-del PTK6) were unresponsive to growth factor-stimulated cell motility relative to SH3-del, KM, or wild-type PTK6 controls. Reverse-phase protein array revealed that while intact PTK6 mediates spheroid formation via p38 MAPK signaling, the SH2 domain of PTK6 limits this biology, and instead mediates TNBC cell motility via activation of the RhoA and/or AhR signaling pathways. Inhibition of RhoA and/or AhR blocked TNBC cell migration as well as the branching/invasive morphology of PTK6+/AhR+ primary breast tumor tissue organoids. Inhibition of RhoA also enhanced paclitaxel cytotoxicity in TNBC cells, including in a taxane-refractory TNBC model. IMPLICATIONS: The SH2-domain of PTK6 is a potent effector of advanced cancer phenotypes in TNBC via RhoA and AhR, identified herein as novel therapeutic targets in PTK6+ breast tumors.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Camundongos , Fenótipo , Ratos , Transdução de Sinais
4.
Mol Cancer Ther ; 19(12): 2528-2541, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32999043

RESUMO

We previously identified ZNF217 as an oncogenic driver of a subset of osteosarcomas using the Sleeping Beauty (SB) transposon system. Here, we followed up by investigating the genetic role of ZNF217 in osteosarcoma initiation and progression through the establishment of a novel genetically engineered mouse model, in vitro assays, orthotopic mouse studies, and paired these findings with preclinical studies using a small-molecule inhibitor. Throughout, we demonstrate that ZNF217 is coupled to numerous facets of osteosarcoma transformation, including proliferation, cell motility, and anchorage independent growth, and ultimately promoting osteosarcoma growth, progression, and metastasis in part through positive modulation of PI3K-AKT survival signaling. Pharmacologic blockade of AKT signaling with nucleoside analogue triciribine in ZNF217+ orthotopically injected osteosarcoma cell lines reduced tumor growth and metastasis. Our data demonstrate that triciribine treatment may be a relevant and efficacious therapeutic strategy for patients with osteosarcoma with ZNF217+ and p-AKT rich tumors. With the recent revitalization of triciribine for clinical studies in other solid cancers, our study provides a rationale for further evaluation preclinically with the purpose of clinical evaluation in patients with incurable, ZNF217+ osteosarcoma.


Assuntos
Biomarcadores Tumorais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Transativadores/genética , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Expressão Ectópica do Gene , Amplificação de Genes , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Modelos Biológicos , Osteossarcoma/tratamento farmacológico , Osteossarcoma/etiologia , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Transdução de Sinais/efeitos dos fármacos , Transativadores/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Bone ; 136: 115353, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32251854

RESUMO

Osteosarcoma (OSA) is a heterogeneous and aggressive solid tumor of the bone. We recently identified the colony stimulating factor 1 receptor (Csf1r) gene as a novel driver of osteosarcomagenesis in mice using the Sleeping Beauty (SB) transposon mutagenesis system. Here, we report that a CSF1R-CSF1 autocrine/paracrine signaling mechanism is constitutively activated in a subset of human OSA cases and is critical for promoting tumor growth and contributes to metastasis. We examined CSF1R and CSF1 expression in OSAs. We utilized gain-of-function and loss-of-function studies (GOF/LOF) to evaluate properties of cellular transformation, downstream signaling, and mechanisms of CSF1R-CSF1 action. Genetic perturbation of CSF1R in immortalized osteoblasts and human OSA cell lines significantly altered oncogenic properties, which were dependent on the CSF1R-CSF1 autocrine/paracrine signaling. These functional alterations were associated with changes in the known CSF1R downstream ERK effector pathway and mitotic cell cycle arrest. We evaluated the recently FDA-approved CSF1R inhibitor Pexidartinib (PLX3397) in OSA cell lines in vitro and in vivo in cell line and patient-derived xenografts. Pharmacological inhibition of CSF1R signaling recapitulated the in vitro genetic alterations. Moreover, in orthotopic OSA cell line and subcutaneous patient-derived xenograft (PDX)-injected mouse models, PLX3397 treatment significantly inhibited local OSA tumor growth and lessened metastatic burden. In summary, CSF1R is utilized by OSA cells to promote tumorigenesis and may represent a new molecular target for therapy.


Assuntos
Fator Estimulador de Colônias de Macrófagos , Osteossarcoma , Aminopiridinas , Animais , Carcinogênese , Camundongos , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Pirróis , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos
6.
Oncogene ; 39(5): 1049-1062, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31582836

RESUMO

Semaphorins, specifically type IV, are important regulators of axonal guidance and have been increasingly implicated in poor prognoses in a number of different solid cancers. In conjunction with their cognate PLXNB family receptors, type IV members have been increasingly shown to mediate oncogenic functions necessary for tumor development and malignant spread. In this study, we investigated the role of semaphorin 4C (SEMA4C) in osteosarcoma growth, progression, and metastasis. We investigated the expression and localization of SEMA4C in primary osteosarcoma patient tissues and its tumorigenic functions in these malignancies. We demonstrate that overexpression of SEMA4C promotes properties of cellular transformation, while RNAi knockdown of SEMA4C promotes adhesion and reduces cellular proliferation, colony formation, migration, wound healing, tumor growth, and lung metastasis. These phenotypic changes were accompanied by reductions in activated AKT signaling, G1 cell cycle delay, and decreases in expression of mesenchymal marker genes SNAI1, SNAI2, and TWIST1. Lastly, monoclonal antibody blockade of SEMA4C in vitro mirrored that of the genetic studies. Together, our results indicate a multi-dimensional oncogenic role for SEMA4C in metastatic osteosarcoma and more importantly that SEMA4C has actionable clinical potential.


Assuntos
Neoplasias Ósseas/patologia , Progressão da Doença , Osteossarcoma/patologia , Semaforinas/metabolismo , Carcinogênese , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Pulmonares/secundário , Metástase Neoplásica , Semaforinas/deficiência , Semaforinas/genética
7.
Mol Ther ; 28(1): 52-63, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31704085

RESUMO

Enhancing natural killer (NK) cell cytotoxicity by blocking inhibitory signaling could lead to improved NK-based cancer immunotherapy. Thus, we have developed a highly efficient method for editing the genome of human NK cells using CRISPR/Cas9 to knock out inhibitory signaling molecules. Our method efficiently edits up to 90% of primary peripheral blood NK cells. As a proof-of-principle we demonstrate highly efficient knockout of ADAM17 and PDCD1, genes that have a functional impact on NK cells, and demonstrate that these gene-edited NK cells have significantly improved activity, cytokine production, and cancer cell cytotoxicity. Furthermore, we were able to expand cells to clinically relevant numbers, without loss of activity. We also demonstrate that our CRISPR/Cas9 method can be used for efficient knockin of genes by delivering homologous recombination template DNA using recombinant adeno-associated virus serotype 6 (rAAV6). Our platform represents a feasible method for generating engineered primary NK cells as a universal therapeutic for cancer immunotherapy.


Assuntos
Transferência Adotiva/métodos , Engenharia Celular/métodos , Engenharia Genética/métodos , Células Matadoras Naturais/imunologia , Neoplasias Ovarianas/terapia , Proteína ADAM17/genética , Animais , Sistemas CRISPR-Cas , Citotoxicidade Imunológica/genética , Dependovirus , Feminino , Técnicas de Inativação de Genes , Voluntários Saudáveis , Humanos , Células K562 , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias Ovarianas/patologia , Parvovirinae/genética , Receptor de Morte Celular Programada 1/genética , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Nat Commun ; 10(1): 5222, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31745080

RESUMO

The fusion of genome engineering and adoptive cellular therapy holds immense promise for the treatment of genetic disease and cancer. Multiplex genome engineering using targeted nucleases can be used to increase the efficacy and broaden the application of such therapies but carries safety risks associated with unintended genomic alterations and genotoxicity. Here, we apply base editor technology for multiplex gene modification in primary human T cells in support of an allogeneic CAR-T platform and demonstrate that base editor can mediate highly efficient multiplex gene disruption with minimal double-strand break induction. Importantly, multiplex base edited T cells exhibit improved expansion and lack double strand break-induced translocations observed in T cells edited with Cas9 nuclease. Our findings highlight base editor as a powerful platform for genetic modification of therapeutically relevant primary cell types.


Assuntos
Sistemas CRISPR-Cas , Engenharia Celular/métodos , Quebras de DNA de Cadeia Dupla , Edição de Genes/métodos , Linfócitos T/metabolismo , Células Cultivadas , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Imunoterapia Adotiva/métodos , Reprodutibilidade dos Testes , Linfócitos T/citologia
10.
Methods Mol Biol ; 1907: 161-170, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30542999

RESUMO

Transposable elements are DNA sequences with the ability to move from one genomic location to another. The movement of class II transposable elements has been functionally harnessed and separated into two distinct DNA transposon components: the terminal inverted repeat sequences that flank genetic cargo to be mobilized and a transposase enzyme capable of recognizing the terminal inverted repeat sequences and catalyzing the transposition reaction. In particular, the Sleeping Beauty (SB) system was the first successful demonstration of transposon-based gene transfer in vertebrate species. Over the years, several improvements have been made to SB technology and more recent studies have demonstrated the versatility of the system for many applications including insertional mutagenesis, gene transfer, and transgenesis. These genetic engineering advances made available by SB both augment and advance large-scale efforts that have been directed toward identifying how genes and environmental factors influence human health in recent years. In the age of personalized medicine, the versatility of SB provides numerous genetic engineering avenues for answering novel questions in basic and applied research. This chapter discusses the use of SB-based insertional mutagenesis in mice for the efficient identification of candidate cancer genes across numerous types of cancers.


Assuntos
Elementos de DNA Transponíveis , Mutagênese , Proteínas de Neoplasias/genética , Neoplasias/genética , Transposases/metabolismo , Engenharia Genética , Genoma Humano , Humanos , Neoplasias/patologia , Recombinação Genética
11.
J Med Chem ; 61(8): 3738-3744, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29578343

RESUMO

ß-Defensin 3 (BD3) was identified as a ligand for the melanocortin receptors (MCRs) in 2007, although the pharmacology activity of BD3 has not been clearly elucidated. Herein, it is demonstrated that human BD3 and mouse BD3 are full micromolar agonists at the MCRs. Furthermore, mouse ß-defensin 1 (BD1) and human BD1 are also MCR micromolar agonists. This work identifies BD1 as an endogenous MCR ligand and clarifies the controversial role of BD3 as a micromolar agonist.


Assuntos
Receptores de Melanocortina/agonistas , beta-Defensinas/farmacologia , Sequência de Aminoácidos , Animais , AMP Cíclico/metabolismo , Humanos , Ligantes , Masculino , Camundongos Endogâmicos C57BL , Receptores de Melanocortina/metabolismo , beta-Defensinas/metabolismo
12.
Neuroscience ; 372: 181-191, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29289721

RESUMO

Aromatase is a key enzyme responsible for the biosynthesis of estrogen from testosterone. Although recent evidence indicates that spinal cord aromatase participates in nociceptive processing, the mechanisms underlying its regulation and its involvement in nociception remain unclear. The present study focuses on the potential role of astrocyte aromatase in formalin-induced acute pain and begins to uncover one mechanism by which spinal aromatase activation is controlled. Following intraplantar formalin injection, nociceptive responses were quantified and immunohistochemistry/co-immunoprecipitation assays were used to investigate the changes in spinal Fos expression and the phospho-serine levels of spinal aromatase. Intrathecal (i.t.) injection of letrozole (an aromatase inhibitor) mitigated both the late phase formalin-induced nociceptive responses and formalin-induced spinal Fos expression. Furthermore, formalin-injected mice showed significantly reduced phospho-serine levels of aromatase, which is associated with the rapid activation of this enzyme. However, sigma-1 receptor inhibition with i.t. BD1047 blocked the dephosphorylation of aromatase and potentiated the pharmacological effect of letrozole on formalin-induced nociceptive responses. In addition, i.t. administration of a sub-effective dose of BD1047 potentiated the pharmacological effect of cyclosporin A (a calcineurin inhibitor) on both the formalin-induced reduction in phospho-serine levels of aromatase and nociceptive behavior. These results suggest that dephosphorylation is an important regulatory mechanism involved in the rapid activation of aromatase and that spinal sigma-1 receptors mediate this dephosphorylation of aromatase through an intrinsic calcineurin pathway.


Assuntos
Aromatase/metabolismo , Astrócitos/metabolismo , Inflamação/metabolismo , Dor Nociceptiva/metabolismo , Medula Espinal/metabolismo , Animais , Inibidores da Aromatase/farmacologia , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Calcineurina/metabolismo , Formaldeído , Proteína Glial Fibrilar Ácida/metabolismo , Inflamação/tratamento farmacológico , Inflamação/patologia , Letrozol , Masculino , Camundongos Endogâmicos ICR , Nitrilas/farmacologia , Dor Nociceptiva/tratamento farmacológico , Dor Nociceptiva/patologia , Proteínas Oncogênicas v-fos/metabolismo , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Receptores sigma/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Triazóis/farmacologia , Receptor Sigma-1
13.
Brain Res Bull ; 134: 47-54, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28652168

RESUMO

Most acute and chronic animal models of pain rely heavily on reflexive assays for evaluating levels of nociception, which involves removing the animal from its normal social environment. Here, we examine and characterize the influence of social interactions on inflammatory pain-evoked changes in movement in two different mouse strains. To produce inflammatory nociception, we injected CFA bilaterally into the hind paws of Balb/c and C3H mice and then recorded exploratory locomotor activity using an automated detector system to first evaluate the effects of social behavior on nociception. Secondly, we determined if carprofen administration altered the effects of social behavior on nociceptive-evoked movement. This methodology was expanded to create a novel thermal activity assay to objectively measure the effect of heat and cold on CFA-evoked animal movement in paired animals. Paired Balb/c and C3H mice exhibited significant hyper-locomotion that lasted for 3h post-injection in Balb/c, but only 1h post-injection in C3H. Single Balb/c mice only showed increased activity for 1h post-injection, while single C3H mice showed no increase. This CFA-induced increase in activity in paired animals was highly inversely correlated with mechanical allodynia as measured using standard Von Frey filaments. Carprofen administration completely blocked this CFA-induced hyperlocomotor activity. Both heat and cold induced a significant increase in locomotor activity in paired mice injected with CFA, while having no effect on activity in control mice injected with saline. The results presented here indicate that social interactions greatly influence inflammatory pain-induced changes in locomotor activity and indicate that the use of movement-based assays to evaluate nociception in paired mice may provide an alternative and more sensitive method to quantify nociception and characterize novel analgesic effects over time in the context of social interactions in rodent models of pain.


Assuntos
Inflamação/psicologia , Atividade Motora , Dor Nociceptiva/psicologia , Comportamento Social , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Carbazóis/farmacologia , Modelos Animais de Doenças , Adjuvante de Freund , Temperatura Alta , Hiperalgesia/tratamento farmacológico , Hiperalgesia/psicologia , Inflamação/tratamento farmacológico , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Atividade Motora/efeitos dos fármacos , Testes Neuropsicológicos , Dor Nociceptiva/tratamento farmacológico , Especificidade da Espécie , Tato
14.
Eur J Pharmacol ; 743: 48-52, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25239072

RESUMO

The therapeutic management of chronic pain associated with many cancers is problematic due to the development of tolerance and other adverse effects during the disease progression. Recently we reported on a bivalent ligand (MMG22) containing both mu agonist and mGluR5 antagonist pharmacophores that produced potent antinociception in mice with LPS-induced acute inflammatory pain via a putative MOR-mGluR5 heteromer. In the present study we have investigated the antinociception of MMG22 in a mouse model of bone cancer pain to determine its effectiveness in reducing this type of chronic nociception. There was a 572-fold increase in the potency of MMG22 over a period of 3-21 days that correlated with the progressive increase in hyperalgesia induced by bone tumor growth following implantation of fibrosarcoma cells in mice. The enhancement of antinociception with the progression of the cancer is possibly due to inhibition of NMDA receptor-mediated hyperalgesia via antagonism of mGluR5 and concomitant activation of MOR by the MMG22-occupied heteromer. Notably, MMG22 was 3.6-million-fold more potent than morphine at PID 21. Since MMG22 exhibited a 250,000-times greater potency than that of a mixture of the mu opioid (M19) agonist and mGluR5 antagonist (MG20) monovalent ligands, the data suggest that targeting the putative MOR-mGluR5 heteromer is far superior to univalent interaction with receptors in reducing tumor-induced nociception. In view of the high potency, long duration (>24h) of action and minimal side effects, MMG22 has the potential to be a superior pharmacological agent than morphine and other opiates in the treatment of chronic cancer pain and to serve as a novel pharmacologic tool.


Assuntos
Analgésicos/farmacologia , Neoplasias Ósseas/complicações , Dor/tratamento farmacológico , Receptor de Glutamato Metabotrópico 5/metabolismo , Receptores Opioides mu/metabolismo , Animais , Neoplasias Ósseas/metabolismo , Linhagem Celular Tumoral , Tolerância a Medicamentos , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C3H , Morfina/farmacologia , Nociceptividade/efeitos dos fármacos
15.
Artigo em Inglês | MEDLINE | ID: mdl-24228059

RESUMO

Osteosarcoma is the most common malignant bone tumor found in children and adolescents and is associated with many complications including cancer pain and metastasis. While cancer patients often seek complementary and alternative medicine (CAM) approaches to treat cancer pain and fatigue or the side effects of chemotherapy and treatment, there is little known about the effect of acupuncture treatment on tumor growth and metastasis. Here we evaluate the effects of six different electroacupuncture (EA) regimens on osteosarcoma tumor growth and metastasis in both male and female mice. The most significant positive effects were observed when EA was applied to the ST-36 acupoint twice weekly (EA-2X/3) beginning at postimplantation day 3 (PID 3). Twice weekly treatment produced robust reductions in tumor growth. Conversely, when EA was applied twice weekly (EA-2X/7), starting at PID 7, there was a significant increase in tumor growth. We further demonstrate that EA-2X/3 treatment elicits significant reductions in tumor lymphatics, vasculature, and innervation. Lastly, EA-2X/3 treatment produced a marked reduction in pulmonary metastasis, thus providing evidence for EA's potential antimetastatic capabilities. Collectively, EA-2X/3 treatment was found to reduce both bone tumor growth and lung metastasis, which may be mediated in part through reductions in tumor-associated vasculature, lymphatics, and innervation.

16.
Proc Natl Acad Sci U S A ; 110(28): 11595-9, 2013 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-23798416

RESUMO

The low effectiveness of morphine and related mu opioid analgesics for the treatment of chronic inflammatory pain is a result of opioid-induced release of proinflammatory cytokines and glutamate that lower the pain threshold. In this regard, the use of opioids with metabotropic glutamate-5 receptor (mGluR5) antagonist has been reported to increase the efficacy of morphine and prevent the establishment of adverse effects during chronic use. Given the presence of opioid receptors (MORs) and mGluR5 in glia and neurons, together with reports that suggest coexpressed MOR/mGluR5 receptors in cultured cells associate as a heteromer, the possibility that such a heteromer could be a target in vivo was addressed by the design and synthesis of a series of bivalent ligands that contain mu opioid agonist and mGluR5 antagonist pharmacophores linked through spacers of varying length (10-24 atoms). The series was evaluated for antinociception using the tail-flick and von Frey assays in mice pretreated with lipopolysaccharide (LPS) or in mice with bone cancer. In LPS-pretreated mice, MMG22 (4c, 22-atom spacer) was the most potent member of the series (intrathecal ED50 ∼9 fmol per mouse), whereas in untreated mice its ED50 was more than three orders of magnitude higher. As members of the series with shorter or longer spacers have ≥500-fold higher ED50s in LPS-treated mice, the exceptional potency of MMG22 may be a result of the optimal bridging of protomers in a putative MOR-mGluR5 heteromer. The finding that MMG22 possesses a >10(6) therapeutic ratio suggests that it may be an excellent candidate for treatment of chronic, intractable pain via spinal administration.


Assuntos
Inflamação/prevenção & controle , Dor/prevenção & controle , Receptores de Glutamato Metabotrópico/metabolismo , Receptores Opioides mu/metabolismo , Analgésicos Opioides/farmacologia , Animais , Inflamação/complicações , Ligantes , Camundongos , Dor/etiologia , Ligação Proteica , Receptor de Glutamato Metabotrópico 5
17.
Artigo em Inglês | MEDLINE | ID: mdl-23320035

RESUMO

Previous studies have shown that electroacupuncture (EA) is able to reduce hyperalgesia in rodent models of persistent pain, but very little is known about the analgesic effects and potential sex differences of different EA treatment regimens. In the present study, we examined the effects of five different EA treatments on tumor-induced hyperalgesia in male and female mice. EA applied to the ST-36 acupoint either twice weekly (EA-2X/3) beginning on postimplantation day (PID) 3 or prophylactically three times prior to implantation produced the most robust and longest lasting antinociceptive effects. EA treatment given once per week beginning at PID 7 only produced an antinociceptive effect in female animals. The analgesic effect of EA-2X/3 began earlier in males, but lasted longer in females indicating sex differences in EA. We further demonstrate that EA-2X/3 elicits a marked decrease in tumor-associated inflammation as evidenced by a significant reduction in tumor-associated neutrophils at PID 7. Moreover, EA-2X/3 produced a significant reduction in tumor-associated PGE(2) as measured in microperfusate samples. Collectively, these data provide evidence that EA-2X/3 treatment reduces tumor-induced hyperalgesia, which is associated with a decrease in tumor-associated inflammation and PGE(2) concentration at the tumor site suggesting possible mechanisms by which EA reduces tumor nociception.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...