Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
NPJ Biofilms Microbiomes ; 10(1): 23, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503782

RESUMO

Bacteria typically live in dense communities where they are surrounded by other species and compete for a limited amount of resources. These competitive interactions can induce defensive responses that also protect against antimicrobials, potentially complicating the antimicrobial treatment of pathogens residing in polymicrobial consortia. Therefore, we evaluate the potential of alternative antivirulence strategies that quench this response to competition. We test three competition quenching approaches: (i) interference with the attack mechanism of surrounding competitors, (ii) inhibition of the stress response systems that detect competition, and (iii) reduction of the overall level of competition in the community by lowering the population density. We show that either strategy can prevent the induction of antimicrobial tolerance of Salmonella Typhimurium in response to competitors. Competition quenching strategies can thus reduce tolerance of pathogens residing in polymicrobial communities and could contribute to the improved eradication of these pathogens via traditional methods.


Assuntos
Antibacterianos , Anti-Infecciosos , Antibacterianos/farmacologia , Biofilmes , Bactérias
2.
Am J Pathol ; 194(5): 641-655, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38309427

RESUMO

Alport syndrome is an inherited kidney disease, which can lead to glomerulosclerosis and fibrosis, as well as end-stage kidney disease in children and adults. Platelet-derived growth factor-D (PDGF-D) mediates glomerulosclerosis and interstitial fibrosis in various models of kidney disease, prompting investigation of its role in a murine model of Alport syndrome. In vitro, PDGF-D induced proliferation and profibrotic activation of conditionally immortalized human parietal epithelial cells. In Col4a3-/- mice, a model of Alport syndrome, PDGF-D mRNA and protein were significantly up-regulated compared with non-diseased wild-type mice. To analyze the therapeutic potential of PDGF-D inhibition, Col4a3-/- mice were treated with a PDGF-D neutralizing antibody. Surprisingly, PDGF-D antibody treatment had no effect on renal function, glomerulosclerosis, fibrosis, or other indices of kidney injury compared with control treatment with unspecific IgG. To characterize the role of PDGF-D in disease development, Col4a3-/- mice with a constitutive genetic deletion of Pdgfd were generated and analyzed. No difference in pathologic features or kidney function was observed in Col4a3-/-Pdgfd-/- mice compared with Col4a3-/-Pdgfd+/+ littermates, confirming the antibody treatment data. Mechanistically, lack of proteolytic PDGF-D activation in Col4a3-/- mice might explain the lack of effects in vivo. In conclusion, despite its established role in kidney fibrosis, PDGF-D, without further activation, does not mediate the development and progression of Alport syndrome in mice.


Assuntos
Nefrite Hereditária , Animais , Camundongos , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Fibrose , Rim/patologia , Camundongos Knockout , Nefrite Hereditária/genética , Nefrite Hereditária/metabolismo , Nefrite Hereditária/patologia , Fator de Crescimento Derivado de Plaquetas/metabolismo , Fator de Crescimento Derivado de Plaquetas/farmacologia , Fator de Crescimento Derivado de Plaquetas/uso terapêutico
3.
Biomedicines ; 11(11)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38002039

RESUMO

Podocytes play a central role in glomerular diseases such as (idiopathic) nephrotic syndrome (iNS). Glucocorticoids are the gold standard therapy for iNS. Nevertheless, frequent relapses are common. In children with iNS, steroid-sparing agents are used to avoid prolonged steroid use and reduce steroid toxicity. Levamisole is one of these steroid-sparing drugs and although clinical effectiveness has been demonstrated, the molecular mechanisms of how levamisole exerts its beneficial effects remains poorly studied. Apart from immunomodulatory capacities, nonimmunological effects of levamisole on podocytes have also been suggested. We aimed to elaborate on the effects of levamisole on human podocytes in iNS. RNA sequencing data from a human podocyte cell line treated with levamisole showed that levamisole modulates the expression of various genes involved in actin cytoskeleton stabilization and remodeling. Functional experiments showed that podocytes exposed to puromycin aminonucleoside (PAN), lipopolysaccharides (LPS), and NS patient plasma resulted in significant actin cytoskeleton derangement, reduced cell motility, and impaired cellular adhesion when compared to controls, effects that could be restored by levamisole. Mechanistic studies revealed that levamisole exerts its beneficial effects on podocytes by signaling through the glucocorticoid receptor and by regulating the activity of Rho GTPases. In summary, our data show that levamisole exerts beneficial effects on podocytes by stabilizing the actin cytoskeleton in a glucocorticoid receptor-dependent manner.

4.
iScience ; 26(6): 106861, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37260744

RESUMO

Biofilms contain extracellular polymeric substances (EPS) that provide structural support and restrict penetration of antimicrobial treatment. To overcome limited penetration, functionalized nanoparticles (NPs) have been suggested as carriers for antimicrobial delivery. Using microscopy, we evaluate the diffusion of nanoparticles in function of the structure of Salmonella biofilms. We observe anomalous diffusion and heterogeneous mobility of NPs resulting in distinct NPs distribution that depended on biofilm structure. Through Brownian dynamics modeling with spatially varying viscosity around bacteria, we demonstrated that spatial gradients in diffusivity generate viscous sinks that trap NPs near bacteria. This model replicates the characteristic diffusion signature and vertical distribution of NPs in the biofilm. From a treatment perspective, our work indicates that both biofilm structure and the level of EPS can impact NP drug delivery, where low levels of EPS might benefit delivery by immobilizing NPs closer to bacteria and higher levels hamper delivery due to shielding effects.

5.
Front Mol Biosci ; 10: 1177560, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37325479

RESUMO

Proliferative forms of glomerulonephritis are characterized by the influx of leukocytes, albuminuria, and loss of kidney function. The glomerular endothelial glycocalyx is a thick carbohydrate layer that covers the endothelium and is comprised of heparan sulfate (HS), which plays a pivotal role in glomerular inflammation by facilitating endothelial-leukocyte trafficking. We hypothesize that the exogenous glomerular glycocalyx may reduce the glomerular influx of inflammatory cells during glomerulonephritis. Indeed, administration of mouse glomerular endothelial cell (mGEnC)-derived glycocalyx constituents, or the low-molecular-weight heparin enoxaparin, reduced proteinuria in mice with experimental glomerulonephritis. Glomerular influx of granulocytes and macrophages, as well as glomerular fibrin deposition, was reduced by the administration of mGEnC-derived glycocalyx constituents, thereby explaining the improved clinical outcome. HSglx also inhibited granulocyte adhesion to human glomerular endothelial cells in vitro. Notably, a specific HSglx fraction inhibited both CD11b and L-selectin binding to activated mGEnCs. Mass spectrometry analysis of this specific fraction revealed six HS oligosaccharides, ranging from tetra- to hexasaccharides with 2-7 sulfates. In summary, we demonstrate that exogenous HSglx reduces albuminuria during glomerulonephritis, which is possibly mediated via multiple mechanisms. Our results justify the further development of structurally defined HS-based therapeutics for patients with (acute) inflammatory glomerular diseases, which may be applicable to non-renal inflammatory diseases as well.

6.
Bioeng Transl Med ; 8(3): e10468, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37206246

RESUMO

Cartilage microtissues are promising tissue modules for bottom up biofabrication of implants leading to bone defect regeneration. Hitherto, most of the protocols for the development of these cartilaginous microtissues have been carried out in static setups, however, for achieving higher scales, dynamic process needs to be investigated. In the present study, we explored the impact of suspension culture on the cartilage microtissues in a novel stirred microbioreactor system. To study the effect of the process shear stress, experiments with three different impeller velocities were carried out. Moreover, we used mathematical modeling to estimate the magnitude of shear stress on the individual microtissues during dynamic culture. Identification of appropriate mixing intensity allowed dynamic bioreactor culture of the microtissues for up to 14 days maintaining microtissue suspension. Dynamic culture did not affect microtissue viability, although lower proliferation was observed as opposed to the statically cultured ones. However, when assessing cell differentiation, gene expression values showed significant upregulation of both Indian Hedgehog (IHH) and collagen type X (COLX), well known markers of chondrogenic hypertrophy, for the dynamically cultured microtissues. Exometabolomics analysis revealed similarly distinct metabolic profiles between static and dynamic conditions. Dynamic cultured microtissues showed a higher glycolytic profile compared with the statically cultured ones while several amino acids such as proline and aspartate exhibited significant differences. Furthermore, in vivo implantations proved that microtissues cultured in dynamic conditions are functional and able to undergo endochondral ossification. Our work demonstrated a suspension differentiation process for the production of cartilaginous microtissues, revealing that shear stress resulted to an acceleration of differentiation towards hypertrophic cartilage.

7.
Biophys J ; 122(10): 1858-1867, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37085996

RESUMO

Cell division during early embryogenesis is linked to key morphogenic events such as embryo symmetry breaking and tissue patterning. It is thought that the physical surrounding of cells together with cell intrinsic cues act as a mechanical "mold," guiding cell division to ensure these events are robust. To quantify how cell division is affected by the mechanical and geometrical environment, we present a novel computational mechanical model of cytokinesis, the final phase of cell division. Simulations with the model reproduced experimentally observed furrow dynamics and describe the volume ratio of daughter cells in asymmetric cell divisions, based on the position and orientation of the mitotic spindle. For dividing cells in geometrically confined environments, we show how the orientation of confinement relative to the division axis modulates the volume ratio in asymmetric cell division. Further, we quantified how cortex viscosity and surface tension determine the shape of a dividing cell and govern bubble-instabilities in asymmetric cell division. Finally, we simulated the formation of the three body axes via sequential (a)symmetric divisions up until the six-cell stage of early C. elegans development, which proceeds within the confines of an eggshell. We demonstrate how model input parameters spindle position and orientation provide sufficient information to reliably predict the volume ratio of daughter cells during the cleavage phase of development. However, for egg geometries perturbed by compression, the model predicts that a change in confinement alone is insufficient to explain experimentally observed differences in cell volume. This points to an effect of the compression on the spindle positioning mechanism. Additionally, the model predicts that confinement stabilizes asymmetric cell divisions against bubble-instabilities.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Divisão Celular Assimétrica , Citocinese , Divisão Celular , Proteínas de Caenorhabditis elegans/metabolismo , Fuso Acromático/metabolismo
8.
Proc Natl Acad Sci U S A ; 120(6): e2216836120, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36724260

RESUMO

Kidney organoids generated from induced pluripotent stem cells (iPSC) have proven valuable for studies of kidney development, disease, and therapeutic screening. However, specific applications have been hampered by limited expansion capacity, immaturity, off-target cells, and inability to access the apical side. Here, we apply recently developed tubuloid protocols to purify and propagate kidney epithelium from d7+18 (post nephrogenesis) iPSC-derived organoids. The resulting 'iPSC organoid-derived (iPSCod)' tubuloids can be exponentially expanded for at least 2.5 mo, while retaining expression of important tubular transporters and segment-specific markers. This approach allows for selective propagation of the mature tubular epithelium, as immature cells, stroma, and undesirable off-target cells rapidly disappeared. iPSCod tubuloids provide easy apical access, which enabled functional evaluation and demonstration of essential secretion and electrolyte reabsorption processes. In conclusion, iPSCod tubuloids provide a different, complementary human kidney model that unlocks opportunities for functional characterization, disease modeling, and regenerative nephrology.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Rim/metabolismo , Epitélio , Organoides/metabolismo , Túbulos Renais , Diferenciação Celular
9.
J Am Soc Nephrol ; 34(2): 241-257, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36351762

RESUMO

BACKGROUND: FSGS is the final common pathway to nephron loss in most forms of severe or progressive glomerular injury. Although podocyte injury initiates FSGS, parietal epithelial cells (PECs) are the main effectors. Because PDGF takes part in fibrotic processes, we hypothesized that the ligand PDGF-B and its receptor PDGFR- ß participate in the origin and progression of FSGS. METHODS: We challenged Thy1.1 transgenic mice, which express Thy1.1 in the podocytes, with anti-Thy1.1 antibody to study the progression of FSGS. We investigated the role of PDGF in FSGS using challenged Thy1.1 mice, 5/6 nephrectomized mice, Col4 -/- (Alport) mice, patient kidney biopsies, and primary murine PECs, and challenged Thy1.1 mice treated with neutralizing anti-PDGF-B antibody therapy. RESULTS: The unchallenged Thy1.1 mice developed only mild spontaneous FSGS, whereas challenged mice developed progressive FSGS accompanied by a decline in kidney function. PEC activation, proliferation, and profibrotic phenotypic switch drove the FSGS. During disease, PDGF-B was upregulated in podocytes, whereas PDGFR- ß was upregulated in PECs from both mice and patients with FSGS. Short- and long-term treatment with PDGF-B neutralizing antibody improved kidney function and reduced FSGS, PEC proliferation, and profibrotic activation. In vitro , stimulation of primary murine PECs with PDGF-B recapitulated in vivo findings with PEC activation and proliferation, which was inhibited by PDGF-B antibody or imatinib. CONCLUSION: PDGF-B-PDGFR- ß molecular crosstalk between podocytes and PECs drives glomerulosclerosis and the progression of FSGS. PODCAST: This article contains a podcast at.


Assuntos
Glomerulosclerose Segmentar e Focal , Podócitos , Camundongos , Animais , Glomerulosclerose Segmentar e Focal/patologia , Fator de Crescimento Derivado de Plaquetas/metabolismo , Glomérulos Renais/patologia , Podócitos/metabolismo , Células Epiteliais/metabolismo , Camundongos Transgênicos
10.
J Pathol ; 259(2): 149-162, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36373978

RESUMO

Scattered tubular cells (STCs) are a phenotypically distinct cell population in the proximal tubule that increase in number after acute kidney injury. We aimed to characterize the human STC population. Three-dimensional human tissue analysis revealed that STCs are preferentially located within inner bends of the tubule and are barely present in young kidney tissue (<2 years), and their number increases with age. Increased STC numbers were associated with acute tubular injury (kidney injury molecule 1) and interstitial fibrosis (alpha smooth muscle actin). Isolated CD13+ CD24- CD133- proximal tubule epithelial cells (PTECs) and CD13+ CD24+ and CD13+ CD133+ STCs were analyzed using RNA sequencing. Transcriptome analysis revealed an upregulation of nuclear factor κB, tumor necrosis factor alpha, and inflammatory pathways in STCs, whereas metabolism, especially the tricarboxylic acid cycle and oxidative phosphorylation, was downregulated, without showing signs of cellular senescence. Using immunostaining and a publicly available single-cell sequencing database of human kidneys, we demonstrate that STCs represent a heterogeneous population in a transient state. In conclusion, STCs are dedifferentiated PTECs showing a metabolic shift toward glycolysis, which could facilitate cellular survival after kidney injury. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Injúria Renal Aguda , Túbulos Renais Proximais , Humanos , Túbulos Renais Proximais/patologia , Rim/metabolismo , Injúria Renal Aguda/metabolismo , Células Epiteliais , Glicólise
11.
Kidney Int Rep ; 7(12): 2691-2703, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36506233

RESUMO

Introduction: The recurrence of proteinuria after kidney transplantation in patients with focal segmental glomerulosclerosis (FSGS) is considered proof of the presence of circulating permeability factors (CPFs). The aim of this study is to demonstrate the presence of plasma CPFs using series of in vitro assays. Methods: Podocytes and endothelial cells (glomerular microvascular endothelial cells [GMVECs]) were incubated with plasma from FSGS patients with presumed CPFs in relapse and remission and from steroid-resistant nephrotic syndrome (SRNS), steroid-sensitive nephrotic syndrome (SSNS), membranous nephropathy (MN), and healthy controls (hCtrls). Cell viability, podocyte actin cytoskeleton architecture, and reactive oxygen species (ROS) formation with or without ROS scavenger were investigated by Cell Counting Kit-8 assay, immunofluorescence staining, and CM-H2DCFDA probing, respectively. Results: Presumed CPF-containing plasma causes a series of events in podocytes but not in GMVECs. These events include actin cytoskeleton rearrangement and excessive formation of ROS, which results in podocyte loss. These effects were solely observed in response to CPF plasma collected during relapse, but not in response to plasma of hCtrls, or patients with SRNS, SSNS, and MN. The copresence of dimethylthiourea, a scavenger of ROS, abolished the aforementioned effects of CPF plasma. Conclusion: We provide a panel of in vitro bioassays to measure podocyte injury and predict the presence of CPFs in plasma of patients with nephrotic syndrome (NS), providing a new framework for monitoring CPF activity that may contribute to future NS diagnostics or used for disease monitoring purposes. Moreover, our findings suggest that the inhibition of ROS formation or facilitating rapid ROS scavenging may exert beneficial effects in patients with CPFs.

12.
Nat Genet ; 54(11): 1690-1701, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36303074

RESUMO

Adult kidney organoids have been described as strictly tubular epithelia and termed tubuloids. While the cellular origin of tubuloids has remained elusive, here we report that they originate from a distinct CD24+ epithelial subpopulation. Long-term-cultured CD24+ cell-derived tubuloids represent a functional human kidney tubule. We show that kidney tubuloids can be used to model the most common inherited kidney disease, namely autosomal dominant polycystic kidney disease (ADPKD), reconstituting the phenotypic hallmark of this disease with cyst formation. Single-cell RNA sequencing of CRISPR-Cas9 gene-edited PKD1- and PKD2-knockout tubuloids and human ADPKD and control tissue shows similarities in upregulation of disease-driving genes. Furthermore, in a proof of concept, we demonstrate that tolvaptan, the only approved drug for ADPKD, has a significant effect on cyst size in tubuloids but no effect on a pluripotent stem cell-derived model. Thus, tubuloids are derived from a tubular epithelial subpopulation and represent an advanced system for ADPKD disease modeling.


Assuntos
Cistos , Rim Policístico Autossômico Dominante , Adulto , Humanos , Rim Policístico Autossômico Dominante/genética , Canais de Cátion TRPP/genética , Organoides , Rim , Antígeno CD24/genética
13.
PLoS One ; 17(9): e0274959, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36137166

RESUMO

Recurrence of proteinuria after kidney transplantation in primary focal segmental glomerulosclerosis (FSGS) is unpredictable. Several putative circulating permeability factors (CPFs) have been suggested, but none have been validated. A clinically relevant experimental model is required that demonstrates the presence of CPF(s) in patient material, to study CPF(s) and possibly predict recurrence in patients. We aimed to develop a FSGS-prone Thy-1.1 transgenic mouse model with accelerated proteinuria after injection of samples from patients with FSGS. The Thy-1.1 transgene was backcrossed into 5 mouse strains. The age of onset and severity of spontaneous proteinuria varied between the different genetic backgrounds. 129X1/SvThy-1.1 and 129S2/SvPasThy-1.1 mice displayed proteinuria at 4 weeks, whereas Balb/cThy-1.1 and C57BL/6JThy-1.1 mice developed proteinuria from 6 weeks, and were used further. We determined the maximum protein dose that could be injected without causing protein overload in each background. Balb/cThy-1.1 and C57BL/6JThy-1.1 males and females were injected with presumably CPF-containing plasmapheresis effluent from 6 FSGS patients, which induced albuminuria particularly in Balb/cThy-1.1 males. Unfortunately, no response could be detected when using sera instead of plasmapheresis effluent, serum being more clinically relevant in the context of predicting FSGS recurrence. Considering the differences between responses elicited by serum and plasmapheresis effluent, simultaneously collected serum, plasma, and plasmapheresis effluent were tested. Whereas we could detect responses using a validated in vitro model, none of these presumably CPF-containing samples induced proteinuria in Balb/cThy-1.1 males. Thus, we have extensively tested the Thy-1.1 mouse model on different genetic backgrounds with proteinuria after injection of FSGS patient material as clinically relevant readout. The Balb/cThy-1.1 male mouse strain demonstrated the most promising results, but to detect CPF activity in FSGS serum e.g. prior to kidney transplantation, this strain clearly lacks sensitivity and is therefore not yet clinically applicable. It could, however, still be used as research tool to study CPFs in patient samples that did induce proteinuria.


Assuntos
Glomerulosclerose Segmentar e Focal , Animais , Feminino , Glomerulosclerose Segmentar e Focal/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Permeabilidade , Plasmaferese , Proteinúria/etiologia , Recidiva
15.
STAR Protoc ; 3(3): 101612, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-35983169

RESUMO

We describe a protocol for single-cell RNA sequencing of SARS-CoV-2-infected human induced pluripotent stem cell (iPSC)-derived kidney organoids. After inoculation of kidney organoids with virus, we use mechanical and enzymatic disruption to obtain single cell suspensions. Next, we process the organoid-derived cells into sequencing-ready SARS-CoV-2-targeted libraries. Subsequent sequencing analysis reveals changes in kidney cells after virus infection. The protocol was designed for kidney organoids cultured in a 6-well transwell format but can be adapted to organoids with different organ backgrounds. For complete details on the use and execution of this protocol, please refer to Jansen et al. (2022).


Assuntos
COVID-19 , Células-Tronco Pluripotentes Induzidas , Humanos , Rim , Organoides , SARS-CoV-2
16.
Am J Pathol ; 192(10): 1418-1432, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35843265

RESUMO

In kidney transplant biopsies, both inflammation and chronic changes are important features that predict long-term graft survival. Quantitative scoring of these features is important for transplant diagnostics and kidney research. However, visual scoring is poorly reproducible and labor intensive. The goal of this study was to investigate the potential of convolutional neural networks (CNNs) to quantify inflammation and chronic features in kidney transplant biopsies. A structure segmentation CNN and a lymphocyte detection CNN were applied on 125 whole-slide image pairs of periodic acid-Schiff- and CD3-stained slides. The CNN results were used to quantify healthy and sclerotic glomeruli, interstitial fibrosis, tubular atrophy, and inflammation within both nonatrophic and atrophic tubuli, and in areas of interstitial fibrosis. The computed tissue features showed high correlation with Banff lesion scores of five pathologists (A.A., A.Dend., J.H.B., J.K., and T.N.). Analyses on a small subset showed a moderate correlation toward higher CD3+ cell density within scarred regions and higher CD3+ cell count inside atrophic tubuli correlated with long-term change of estimated glomerular filtration rate. The presented CNNs are valid tools to yield objective quantitative information on glomeruli number, fibrotic tissue, and inflammation within scarred and non-scarred kidney parenchyma in a reproducible manner. CNNs have the potential to improve kidney transplant diagnostics and will benefit the community as a novel method to generate surrogate end points for large-scale clinical studies.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Rim , Atrofia/patologia , Biomarcadores , Biópsia , Fibrose , Doença Enxerto-Hospedeiro/patologia , Humanos , Inflamação/patologia , Rim/patologia , Redes Neurais de Computação , Ácido Periódico
17.
ISME J ; 16(10): 2305-2312, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35778439

RESUMO

In Saccharomyces cerevisiae, the FLO1 gene encodes flocculins that lead to formation of multicellular flocs, that offer protection to the constituent cells. Flo1p was found to preferentially bind to fellow cooperators compared to defectors lacking FLO1 expression, enriching cooperators within the flocs. Given this dual function in cooperation and kin recognition, FLO1 has been termed a "green beard gene". Because of the heterophilic nature of the Flo1p bond however, we hypothesize that kin recognition is permissive and depends on the relative stability of the FLO1+/flo1- versus FLO1+/FLO1+ detachment force F. We combine single-cell measurements of adhesion, individual cell-based simulations of cluster formation, and in vitro flocculation to study the impact of relative bond stability on the evolutionary stability of cooperation. We identify a trade-off between both aspects of the green beard mechanism, with reduced relative bond stability leading to increased kin recognition at the expense of cooperative benefits. We show that the fitness of FLO1 cooperators decreases as their frequency in the population increases, arising from the observed permissive character (F+- = 0.5 F++) of the Flo1p bond. Considering the costs associated with FLO1 expression, this asymmetric selection often results in a stable coexistence between cooperators and defectors.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Evolução Biológica , Floculação , Lectinas de Ligação a Manose/química , Lectinas de Ligação a Manose/genética , Lectinas de Ligação a Manose/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
Pharmaceuticals (Basel) ; 15(5)2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35631396

RESUMO

In this study, we compared the tumor-targeting properties, therapeutic efficacy, and tolerability of the humanized anti-CAIX antibody (hG250) labeled with either the α-emitter actinium-225 (225Ac) or the ß--emitter lutetium-177 (177Lu) in mice. BALB/c nude mice were grafted with human renal cell carcinoma SK-RC-52 cells and intravenously injected with 30 µg [225Ac] Ac-DOTA-hG250 (225Ac-hG250) or 30 µg [177Lu] Lu-DOTA-hG250 (177Lu-hG250), followed by ex vivo biodistribution studies. Therapeutic efficacy was evaluated in mice receiving 5, 15, and 25 kBq of 225Ac-hG250; 13 MBq of 177Lu-hG250; or no treatment. Tolerability was evaluated in non-tumor-bearing animals. High tumor uptake of both radioimmunoconjugates was observed and increased up to day 7 (212.8 ± 50.2 %IA/g vs. 101.0 ± 18.4 %IA/g for 225Ac-hG250 and 177Lu-hG250, respectively). Survival was significantly prolonged in mice treated with 15 kBq 225Ac-hG250, 25 kBq 225Ac-hG250, and 13 MBq 177Lu-hG250 compared to untreated control (p < 0.05). Non-tumor-bearing mice that received single-dose treatment with 15 or 25 kBq 225Ac-hG250 showed weight loss at the end of the experiment (day 126), and immunohistochemical analysis suggested radiation-induced nephrotoxicity. These results demonstrate the therapeutic potential of CAIX-targeted α-therapy in renal cell carcinoma. Future studies are required to find an optimal balance between therapeutic efficacy and toxicity.

19.
Front Cell Dev Biol ; 10: 765887, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35372336

RESUMO

It is well established that mammalian kidney epithelial cells contain a single non-motile primary cilium (9 + 0 pattern). However, we noted the presence of multiple motile cilia with a central microtubular pair (9 + 2 pattern) in kidney biopsies of 11 patients with various kidney diseases, using transmission electron microscopy. Immunofluorescence staining revealed the expression of the motile cilia-specific markers Radial Spoke Head Protein 4 homolog A, Forkhead-box-protein J1 and Regulatory factor X3. Multiciliated cells were exclusively observed in proximal tubuli and a relative frequent observation in human kidney tissue: in 16.7% of biopsies with tubular injury and atrophy (3 of 18 tissues), in 17.6% of biopsies from patients with membranous nephropathy (3 of 17 tissues) and in 10% of the human kidney tissues derived from the unaffected pole after tumour nephrectomy (3 of 30 tissues). However, these particular tissues showed marked tubular injury and fibrosis. Further analysis showed a significant relation between the presence of multiciliated cells and an increased expression of alpha-smooth-muscle-actin (p-value < 0.01) and presence of Kidney-injury-molecule-1 (p-value < 0.01). Interestingly, multiciliated cells co-showed staining for the scattered tubular cell markers annexin A2, annexin A3, vimentin and phosphofructokinase platelet but not with cell senescence associated markers, like (p16) and degradation of lamin B. In conclusion, multiciliated proximal tubular cells with motile cilia were frequently observed in kidney biopsies and associated with tubular injury and interstitial fibrosis. These data suggest that proximal tubular cells are able to transdifferentiate into multiciliated cells.

20.
Development ; 149(9)2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35417019

RESUMO

Nephrotic syndrome (NS) is characterized by severe proteinuria as a consequence of kidney glomerular injury due to podocyte damage. In vitro models mimicking in vivo podocyte characteristics are a prerequisite to resolve NS pathogenesis. The detailed characterization of organoid podocytes resulting from a hybrid culture protocol showed a podocyte population that resembles adult podocytes and was superior compared with 2D counterparts, based on single-cell RNA sequencing, super-resolution imaging and electron microscopy. In this study, these next-generation podocytes in kidney organoids enabled personalized idiopathic nephrotic syndrome modeling, as shown by activated slit diaphragm signaling and podocyte injury following protamine sulfate, puromycin aminonucleoside treatment and exposure to NS plasma containing pathogenic permeability factors. Organoids cultured from cells of a patient with heterozygous NPHS2 mutations showed poor NPHS2 expression and aberrant NPHS1 localization, which was reversible after genetic correction. Repaired organoids displayed increased VEGFA pathway activity and transcription factor activity known to be essential for podocyte physiology, as shown by RNA sequencing. This study shows that organoids are the preferred model of choice to study idiopathic and congenital podocytopathies.


Assuntos
Síndrome Nefrótica , Células-Tronco Pluripotentes , Podócitos , Feminino , Humanos , Rim/metabolismo , Masculino , Síndrome Nefrótica/genética , Síndrome Nefrótica/metabolismo , Síndrome Nefrótica/patologia , Organoides , Células-Tronco Pluripotentes/metabolismo , Podócitos/metabolismo , Podócitos/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...