Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Funct ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747170

RESUMO

Correction for 'Gastric coagulation and postprandial amino acid absorption of milk is affected by mineral composition: a randomized crossover trial' by Elise J. M. van Eijnatten et al., Food Funct., 2024, 15, 3098-3107, https://doi.org/10.1039/D3FO04063A.

2.
Food Funct ; 15(6): 3098-3107, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38416477

RESUMO

Background: In vitro studies suggest that casein coagulation of milk is influenced by its mineral composition, and may therefore affect the dynamics of protein digestion, gastric emptying and appearance of amino acids (AA) in the blood, but this remains to be confirmed in vivo. Objective: This study aimed to compare gastrointestinal digestion between two milks with the same total calcium content but different casein mineralization (CM). Design: Fifteen males (age 30.9 ± 13.8 years, BMI 22.5 ± 2.2 kg m-2) participated in this randomized cross-over study with two treatments. Participants underwent gastric magnetic resonance imaging (MRI) scans at the baseline and every 10 min up to 90 min after consumption of 600 ml milk with low or high CM. Blood samples were taken at the baseline and up to 5 hours postprandially. Primary outcomes were postprandial plasma AA concentrations and gastric emptying rate. Secondary outcomes were postprandial glucose and insulin levels, gastric coagulation as estimated by image texture metrics, and appetite ratings. Results: Gastric content volume over time was similar for both treatments. However, gastric content image analysis suggested that the liquid fraction emptied quicker in the high CM milk, while the coagulum emptied slower. Relative to high CM, low CM showed earlier appearance of AAs that are more dominant in casein, such as proline (MD 4.18 µmol L-1, 95% CI [2.38-5.98], p < 0.001), while there was no difference in appearance of AAs that are more dominant in whey protein, such as leucine. The image texture metrics homogeneity and busyness differed significantly between treatments (MD 0.007, 95% CI [0.001, 0.012], p = 0.022; MD 0.005, 95% CI [0.001, 0.010], p = 0.012) likely because of a reduced coagulation in the low CM milk. Conclusions: Mineral composition of milk can influence postprandial serum AA kinetics, likely due to differences in coagulation dynamics. The clinical trial registry number is NL8959 (https://clinicaltrials.gov).


Assuntos
Aminoácidos , Leite , Masculino , Humanos , Adolescente , Adulto Jovem , Adulto , Animais , Aminoácidos/análise , Leite/química , Caseínas/química , Estudos Cross-Over , Glicemia/metabolismo , Minerais/análise
3.
Biol Psychol ; 186: 108754, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38253167

RESUMO

E-cigarettes are harmful, addictive, and popular. In e-cigarettes, nicotine is often paired with food-flavors. How this pairing of nicotine and food cues influences neural processing warrants investigation, as in smokers, both types of cues activate similar brain regions. Additionally, while most e-cigarettes are sweet, savory e-cigarettes are seemingly absent, although savory flavors are commonly liked in food. To understand how smoking status and type of flavor modulate reactions to food-flavored e-cigarettes, in comparison to actual food, neural and subjective responses to food odors were measured in a 2 (sweet vs. savory odor) x2 (food vs. e-cigarette context) x2 (smokers vs. non-smokers) design in 22 occasional/light smokers and 25 non-smokers. During fMRI scanning, participants were exposed to sweet and savory odors and pictures creating the two contexts. Liking and wanting were repeatedly measured on a 100-unit visual-analogue-scale. Results show that sweet e-cigarettes were liked (Δ = 14.2 ± 1.7) and wanted (Δ = 39.5 ± 3.1) more than savory e-cigarettes, and their cues activated the anterior cingulate more (cluster-level qFDR = 0.003). Further, we observed context-dependent variations in insula response to odors (cluster-level qFDR = 0.023, and = 0.030). Savory odors in an e-cigarette context were wanted less than the same odors in a food-context (Δ = 32.8 ± 3.1). Smokers and non-smokers reacted similarly to flavored product cues. Our results indicate that the principles of flavor preference in food cannot directly be applied to e-cigarettes and that it is challenging to design sweet and savory e-cigarettes to appeal to smokers only.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Humanos , Nicotina , Fumar , Aromatizantes , Fumantes
4.
Neurogastroenterol Motil ; 36(1): e14696, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37877465

RESUMO

BACKGROUND: Gastrointestinal symptoms after drinking milk are often attributed to lactose intolerance or cow's milk allergy. However, some individuals without either condition still report gastrointestinal symptoms after drinking milk. This may be caused by gastric emptying (GE) rate or gastric protein coagulation. This study aimed to compare GE rate and protein coagulation after milk consumption between individuals reporting gastrointestinal symptoms and those without symptoms using a novel gastric MRI approach. METHODS: Thirty women were included in this case-control study, of whom 15 reported gastrointestinal symptoms after drinking milk and 15 were controls. Participants underwent gastric MRI before and up to 90 min after consumption of 250 mL cow's milk. Gastric content volume and image texture of the stomach contents were used to determine GE and changes in the degree of coagulation. KEY RESULTS: GE half-time did not differ between the groups (gastrointestinal symptom group 66 ± 18 min; control group 61 ± 14 min, p = 0.845). The gastrointestinal symptom group reported symptoms from 30 min onwards and rated pain highest at 90 min. The control group reported no symptoms. Image texture analyses showed a significantly higher percentage of coagulum and lower percentage of liquid in the group in the GI symptom group (MD 11%, 95% CI [3.9, 17], p = 0.003). In vitro data suggests that pH and proteolytic enzyme activity influence the coagulum structure. CONCLUSIONS AND INFERENCES: Gastric milk coagulation and emptied fraction of stomach content may differ between individuals experiencing symptoms after milk consumption, possibly due to differences in pH and proteolytic enzyme activity.


Assuntos
Gastroenteropatias , Leite , Animais , Bovinos , Humanos , Feminino , Leite/efeitos adversos , Leite/química , Esvaziamento Gástrico , Estudos de Casos e Controles , Gastroenteropatias/etiologia , Peptídeo Hidrolases , Ingestão de Alimentos
5.
Neuroimage Clin ; 38: 103411, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37163913

RESUMO

The olfactory bulbs (OBs) play a key role in olfactory processing; their volume is important for diagnosis, prognosis and treatment of patients with olfactory loss. Until now, measurements of OB volumes have been limited to quantification of manually segmented OBs, which is a cumbersome task and makes evaluation of OB volumes in large scale clinical studies infeasible. Hence, the aim of this study was to evaluate the potential of our previously developed automatic OB segmentation method for application in clinical practice and to relate the results to clinical outcome measures. To evaluate utilization potential of the automatic segmentation method, three data sets containing MR scans of patients with olfactory loss were included. Dataset 1 (N = 66) and 3 (N = 181) were collected at the Smell and Taste Center in Ede (NL) on a 3 T scanner; dataset 2 (N = 42) was collected at the Smell and Taste Clinic in Dresden (DE) on a 1.5 T scanner. To define the reference standard, manual annotation of the OBs was performed in Dataset 1 and 2. OBs were segmented with a method that employs two consecutive convolutional neural networks (CNNs) that the first localize the OBs in an MRI scan and subsequently segment them. In Dataset 1 and 2, the method accurately segmented the OBs, resulting in a Dice coefficient above 0.7 and average symmetrical surface distance below 0.3 mm. Volumes determined from manual and automatic segmentations showed a strong correlation (Dataset 1: r = 0.79, p < 0.001; Dataset 2: r = 0.72, p = 0.004). In addition, the method was able to recognize the absence of an OB. In Dataset 3, OB volumes computed from automatic segmentations obtained with our method were related to clinical outcome measures, i.e. duration and etiology of olfactory loss, and olfactory ability. We found that OB volume was significantly related to age of the patient, duration and etiology of olfactory loss, and olfactory ability (F(5, 172) = 11.348, p < 0.001, R2 = 0.248). In conclusion, the results demonstrate that automatic segmentation of the OBs and subsequent computation of their volumes in MRI scans can be performed accurately and can be applied in clinical and research population studies. Automatic evaluation may lead to more insight in the role of OB volume in diagnosis, prognosis and treatment of olfactory loss.


Assuntos
Redes Neurais de Computação , Bulbo Olfatório , Humanos , Bulbo Olfatório/diagnóstico por imagem , Olfato , Imageamento por Ressonância Magnética/métodos
6.
Hum Brain Mapp ; 44(2): 418-428, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36056618

RESUMO

The neural underpinnings of the integration of internal and external cues that reflect nutritional status are poorly understood in humans. The hypothalamus is a key integrative area involved in short- and long-term energy intake regulation. Hence, we examined the effect of hunger state on the hypothalamus network using functional magnetic resonance imaging. In a multicenter study, participants performed a food cue viewing task either fasted or sated on two separate days. We evaluated hypothalamic functional connectivity (FC) using psychophysiological interactions during high versus low caloric food cue viewing in 107 adults (divided into four groups based on age and body mass index [BMI]; age range 24-76 years; BMI range 19.5-41.5 kg/m2 ). In the sated compared to the fasted condition, the hypothalamus showed significantly higher FC with the bilateral caudate, the left insula and parts of the left inferior frontal cortex. Interestingly, we observed a significant interaction between hunger state and BMI group in the dorsolateral prefrontal cortex (DLPFC). Participants with normal weight compared to overweight and obesity showed higher FC between the hypothalamus and DLPFC in the fasted condition. The current study showed that task-based FC of the hypothalamus can be modulated by internal (hunger state) and external cues (i.e., food cues with varying caloric content) with a general enhanced communication in the sated state and obesity-associated differences in hypothalamus to DLPFC communication. This could potentially promote overeating in persons with obesity.


Assuntos
Sinais (Psicologia) , Fome , Adulto , Humanos , Adulto Jovem , Pessoa de Meia-Idade , Idoso , Fome/fisiologia , Obesidade , Alimentos , Hipotálamo/diagnóstico por imagem , Hipotálamo/fisiologia , Imageamento por Ressonância Magnética/métodos
7.
Biol Psychiatry ; 92(9): 730-738, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36031441

RESUMO

BACKGROUND: The pattern of structural brain abnormalities in anorexia nervosa (AN) is still not well understood. While several studies report substantial deficits in gray matter volume and cortical thickness in acutely underweight patients, others find no differences, or even increases in patients compared with healthy control subjects. Recent weight regain before scanning may explain some of this heterogeneity. To clarify the extent, magnitude, and dependencies of gray matter changes in AN, we conducted a prospective, coordinated meta-analysis of multicenter neuroimaging data. METHODS: We analyzed T1-weighted structural magnetic resonance imaging scans assessed with standardized methods from 685 female patients with AN and 963 female healthy control subjects across 22 sites worldwide. In addition to a case-control comparison, we conducted a 3-group analysis comparing healthy control subjects with acutely underweight AN patients (n = 466) and partially weight-restored patients in treatment (n = 251). RESULTS: In AN, reductions in cortical thickness, subcortical volumes, and, to a lesser extent, cortical surface area were sizable (Cohen's d up to 0.95), widespread, and colocalized with hub regions. Highlighting the effects of undernutrition, these deficits were associated with lower body mass index in the AN sample and were less pronounced in partially weight-restored patients. CONCLUSIONS: The effect sizes observed for cortical thickness deficits in acute AN are the largest of any psychiatric disorder investigated in the ENIGMA (Enhancing Neuro Imaging Genetics through Meta Analysis) Consortium to date. These results confirm the importance of considering weight loss and renutrition in biomedical research on AN and underscore the importance of treatment engagement to prevent potentially long-lasting structural brain changes in this population.


Assuntos
Anorexia Nervosa , Anorexia Nervosa/diagnóstico por imagem , Anorexia Nervosa/terapia , Encéfalo/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Estudos Multicêntricos como Assunto , Estudos Prospectivos , Magreza
8.
Food Chem ; 383: 132545, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35255364

RESUMO

Processing of milk involves heating, which can modify the structure and digestibility of its proteins. In vitro models are useful for studying protein digestion. However, validating these models with in vivo data is challenging. Here, we non-invasively monitor in vitro gastric milk protein digestion by protein-water chemical exchange detected by 1H nuclear magnetic resonance (NMR) magnetization transfer (MT). We obtained either a fitted composite exchange rate (CER) with a relative standard error of ≤10% or the MT ratio (MTR) of the intensity without or with an off-resonance saturation pulse, from just a single spectral acquisition. Both CER and MTR, affected by the variation in the amount of semi-solid protons, decreased during in vitro gastric digestion in agreement with standard protein content analyses. The decrease was slower in heated milk, indicating slower breakdown of the coagulum. Our results open the way to future quantification of protein digestion in vivo by MRI.


Assuntos
Proteínas do Leite , Prótons , Digestão , Cinética , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Proteínas do Leite/metabolismo , Proteólise , Espectroscopia de Prótons por Ressonância Magnética
10.
Sci Rep ; 11(1): 22205, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34772996

RESUMO

Research into the effect of nutrition on attention-deficit hyperactivity disorder (ADHD) in children has shown that the few-foods diet (FFD) substantially decreases ADHD symptoms in 60% of children. However, the underlying mechanism is unknown. In this open-label nutritional intervention study we investigated whether behavioural changes after following an FFD are associated with changes in brain function during inhibitory control in 79 boys with ADHD, aged 8-10 years. Parents completed the ADHD Rating Scale before (t1) and after the FFD (t2). Functional magnetic resonance imaging (fMRI) scans were acquired during a stop-signal task at t1 and t2, and initial subject-level analyses were done blinded for ARS scores. Fifty (63%) participants were diet responders, showing a decrease of ADHD symptoms of at least 40%. Fifty-three children had fMRI scans of sufficient quality for further analysis. Region-of-interest analyses demonstrated that brain activation in regions implicated in the stop-signal task was not associated with ADHD symptom change. However, whole-brain analyses revealed a correlation between ADHD symptom decrease and increased precuneus activation (pFWE(cluster) = 0.015 for StopSuccess > Go trials and pFWE(cluster) < 0.001 for StopSuccess > StopFail trials). These results provide evidence for a neurocognitive mechanism underlying the efficacy of a few-foods diet in children with ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico , Transtorno do Deficit de Atenção com Hiperatividade/etiologia , Encéfalo/fisiopatologia , Dieta , Transtorno do Deficit de Atenção com Hiperatividade/terapia , Encéfalo/diagnóstico por imagem , Criança , Comorbidade , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/métodos , Masculino , Avaliação de Sintomas
11.
J Nutr ; 151(12): 3718-3724, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34590118

RESUMO

BACKGROUND: When sufficient breast milk is not available, infant formula is often used as an alternative. As for digestion, gastric behavior of infant formula and breast milk have not been studied in detail. OBJECTIVE: This study aimed to compare gastric emptying and intragastric behavior between breast milk and infant formula in vivo using MRI. METHODS: In this randomized crossover study, 16 lactating mothers (age: 31.7 ± 2.9 y; time since giving birth: 9.3 ± 2 mo), underwent gastric MRI scans before and after consumption of 200 mL of infant formula or their own breast milk. MRI scans were performed after an overnight fast (baseline) and every 10 min up until 60 min following ingestion. Primary outcomes were gastric emptying measures and the secondary outcome was gastric layer volume over time. Differences between infant formula and breast milk in total gastric volume and layering volume were tested using linear mixed models. RESULTS: Gastric emptying half-time was 5.1 min faster for breast milk than for infant formula (95% CI: -19.0 to 29.2) (n = 14). Within a subgroup (n = 12) with similar initial gastric volume (<20 mL difference), gastric emptying half-time was 20 min faster for breast milk (95% CI: 1.23-43.1). Top layer volume (n = 16) was 6.4 mL greater for infant formula than for breast milk (95% CI: 1.9-10.8). This effect is driven by t = 10 and t = 20 min postingestion. CONCLUSIONS: When taking initial gastric volume into account, breast milk emptied faster than infant formula in women, which is in line with previous findings in infants. Infant formula showed a significantly larger top layer volume in the first 20 min after ingestion. MRI in adults may find application in studies assessing gastric behavior of infant formula.


Assuntos
Esvaziamento Gástrico , Leite Humano , Adulto , Estudos Cross-Over , Feminino , Humanos , Lactente , Fórmulas Infantis , Recém-Nascido , Recém-Nascido Prematuro , Lactação , Mães , Gravidez
12.
Am J Clin Nutr ; 114(4): 1280-1285, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34258613

RESUMO

Two questions regarding the scientific literature have become grist for public discussion: 1) what place should P values have in reporting the results of studies? 2) How should the perceived difficulty in replicating the results reported in published studies be addressed? We consider these questions to be 2 sides of the same coin; failing to address them can lead to an incomplete or incorrect message being sent to the reader. If P values (which are derived from the estimate of the effect size and a measure of the precision of the estimate of the effect) are used improperly, for example reporting only significant findings, or reporting P values without account for multiple comparisons, or failing to indicate the number of tests performed, the scientific record can be biased. Moreover, if there is a lack of transparency in the conduct of a study and reporting of study results, it will not be possible to repeat a study in a manner that allows inferences from the original study to be reproduced or to design and conduct a different experiment whose aim is to confirm the original study's findings. The goal of this article is to discuss how P values can be used in a manner that is consistent with the scientific method, and to increase transparency and reproducibility in the conduct and analysis of nutrition research.


Assuntos
Revelação , Ciências da Nutrição , Publicações Periódicas como Assunto , Editoração/normas , Reprodutibilidade dos Testes , Projetos de Pesquisa , Políticas Editoriais , Humanos , Projetos de Pesquisa/estatística & dados numéricos , Estados Unidos
13.
Neuroimage ; 240: 118374, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34245869

RESUMO

Food cue exposure can trigger eating. Food cue reactivity (FCR) is a conditioned response to food cues and includes physiological responses and activation of reward-related brain areas. FCR can be affected by hunger and weight status. The appetite-regulating hormones ghrelin and leptin play a pivotal role in homeostatic as well as hedonic eating. We examined the association between ghrelin and leptin levels and neural FCR in the fasted and sated state and the association between meal-induced changes in ghrelin and neural FCR, and in how far these associations are related to BMI and HOMA-IR. Data from 109 participants from three European centers (age 50±18 y, BMI 27±5 kg/m2) who performed a food viewing task during fMRI after an overnight fast and after a standardized meal were analyzed. Blood samples were drawn prior to the viewing task in which high-caloric, low-caloric and non-food images were shown. Fasting ghrelin was positively associated with neural FCR in the inferior and superior occipital gyrus in the fasted state. This was partly attributable to BMI and HOMA-IR. These brain regions are involved in visual attention, suggesting that individuals with higher fasting ghrelin have heightened attention to food cues. Leptin was positively associated with high calorie FCR in the medial prefrontal cortex (PFC) in the fasted state and to neural FCR in the left supramarginal gyrus in the fasted versus sated state, when correcting for BMI and HOMA-IR, respectively. This PFC region is involved in assessing anticipated reward value, suggesting that for individuals with higher leptin levels high-caloric foods are more salient than low-caloric foods, but foods in general are not more salient than non-foods. There were no associations between ghrelin and leptin and neural FCR in the sated state, nor between meal-induced changes in ghrelin and neural FCR. In conclusion, we show modest associations between ghrelin and leptin and neural FCR in a relatively large sample of European adults with a broad age and BMI range. Our findings indicate that people with higher leptin levels for their weight status and people with higher ghrelin levels may be more attracted to high caloric foods when hungry. The results of the present study form a foundation for future studies to test whether food intake and (changes in) weight status can be predicted by the association between (mainly fasting) ghrelin and leptin levels and neural FCR.


Assuntos
Encéfalo/fisiologia , Sinais (Psicologia) , Jejum/sangue , Alimentos , Grelina/sangue , Leptina/sangue , Resposta de Saciedade/fisiologia , Adulto , Idoso , Apetite/fisiologia , Biomarcadores/sangue , Encéfalo/diagnóstico por imagem , Jejum/psicologia , Feminino , Humanos , Fome/fisiologia , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Sobrepeso/sangue , Sobrepeso/diagnóstico por imagem , Sobrepeso/psicologia
14.
Proc Nutr Soc ; 80(2): 148-158, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32981545

RESUMO

This review outlines the current use of magnetic resonance (MR) techniques to study digestion and highlights their potential for providing markers of digestive processes such as texture changes and nutrient breakdown. In vivo digestion research can be challenging due to practical constraints and biological complexity. Therefore, digestion is primarily studied using in vitro models. These would benefit from further in vivo validation. NMR is widely used to characterise food systems. MRI is a related technique that can be used to study both in vitro model systems and in vivo gastro-intestinal processes. MRI allows visualisation and quantification of gastric processes such as gastric emptying and coagulation. Both MRI and NMR scan sequences can be configured to be sensitive to different aspects of gastric or intestinal contents. For example, magnetisation transfer and chemical exchange saturation transfer can detect proton (1H) exchange between water and proteins. MRI techniques have the potential to provide molecular-level and quantitative information on in vivo gastric (protein) digestion. This requires careful validation in order to understand what these MR markers of digestion mean in a specific digestion context. Combined with other measures they can be used to validate and inform in vitro digestion models. This may bridge the gap between in vitro and in vivo digestion research and can aid the optimisation of food properties for different applications in health and disease.


Assuntos
Digestão , Esvaziamento Gástrico , Alimentos , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética
15.
Int J Eat Disord ; 54(7): 1116-1126, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32671875

RESUMO

Satiation is influenced by a variety of signals including gastric distention and oro-sensory stimulation. Here we developed a high-field (9.4 T) functional magnetic resonance imaging (fMRI) protocol to test how oro-sensory stimulation and gastric distention, as induced with a block-design paradigm, affect brain activation under different states of energy balance in rats. Repeated tasting of sucrose induced positive and negative fMRI responses in the ventral tegmental area and septum, respectively, and gradual neural activation in the anterior insula and the brain stem nucleus of the solitary tract (NTS), as revealed using a two-level generalized linear model-based analysis. These unique findings align with comparable human experiments, and are now for the first time identified in rats, thereby allowing for comparison between species. Gastric distention induced more extensive brain activation, involving the insular cortex and NTS. Our findings are largely in line with human studies that have shown that the NTS is involved in processing both visceral information and taste, and anterior insula in processing sweet taste oro-sensory signals. Gastric distention and sucrose tasting induced responses in mesolimbic areas, to our knowledge not previously detected in humans, which may reflect the rewarding effects of a full stomach and sweet taste, thereby giving more insight into the processing of sensory signals leading to satiation. The similarities of these data to human neuroimaging data demonstrate the translational value of the approach and offer a new avenue to deepen our understanding of the process of satiation in healthy people and those with eating disorders.


Assuntos
Encéfalo , Paladar , Animais , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Humanos , Imageamento por Ressonância Magnética , Ratos , Saciação , Percepção Gustatória
16.
Sci Rep ; 10(1): 19072, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33149176

RESUMO

Distracted eating can lead to increased food intake, but it is unclear how. We aimed to assess how distraction affects motivated, goal-directed responses for food reward after satiation. Thirty-eight healthy normal-weight participants (28F; 10M) performed a visual detection task varying in attentional load (high vs. low distraction) during fMRI. Simultaneously, they exerted effort for sweet and savory food rewards by repeated button presses. Two fMRI runs were separated by sensory-specific satiation (outcome devaluation) of one of the (sweet or savory) reward outcomes, to assess outcome-sensitive, goal-directed, responses (valued vs. devalued reward, post vs. pre satiation). We could not verify our primary hypothesis that more distraction leads to less activation in ventromedial prefrontal cortex (vmPFC) during goal-directed effort. Behaviorally, distraction also did not affect effort for food reward following satiation across subjects. For our secondary hypothesis, we assessed whether distraction affected other fronto-striatal regions during goal-directed effort. We did not obtain such effects at our whole-brain corrected threshold, but at an exploratory uncorrected threshold (p < 0.001), distraction decreased goal-directed responses (devalued vs. valued) in the right inferior frontal gyrus (rIFG). We continued with this rIFG region for the next secondary hypothesis; specifically, that distraction would reduce functional connectivity with the fronto-striatal regions found in the previous analyses. Indeed, distraction decreased functional connectivity between the rIFG and left putamen for valued versus devalued food rewards (pFWE(cluster) < 0.05). In an exploratory brain-behavior analysis, we showed that distraction-sensitive rIFG-responses correlated negatively (r = - 0.40; p = 0.014) with the effect of distraction on effort. Specifically, decreased distraction-related rIFG-responses were associated with increased effort for food reward after satiation. We discuss the absence of distraction effects on goal-directed responses in vmPFC and in behavior across participants. Moreover, based on our significant functional connectivity and brain-behavior results, we suggest that distraction might attenuate the ability to inhibit responses for food reward after satiation by affecting the rIFG and its connection to the putamen.


Assuntos
Conectoma , Lobo Frontal/fisiologia , Objetivos , Putamen/fisiologia , Recompensa , Adulto , Atenção , Feminino , Alimentos , Humanos , Masculino
17.
IEEE Trans Med Imaging ; 39(12): 4011-4022, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32746142

RESUMO

In this study, we propose a fast and accurate method to automatically localize anatomical landmarks in medical images. We employ a global-to-local localization approach using fully convolutional neural networks (FCNNs). First, a global FCNN localizes multiple landmarks through the analysis of image patches, performing regression and classification simultaneously. In regression, displacement vectors pointing from the center of image patches towards landmark locations are determined. In classification, presence of landmarks of interest in the patch is established. Global landmark locations are obtained by averaging the predicted displacement vectors, where the contribution of each displacement vector is weighted by the posterior classification probability of the patch that it is pointing from. Subsequently, for each landmark localized with global localization, local analysis is performed. Specialized FCNNs refine the global landmark locations by analyzing local sub-images in a similar manner, i.e. by performing regression and classification simultaneously and combining the results. Evaluation was performed through localization of 8 anatomical landmarks in CCTA scans, 2 landmarks in olfactory MR scans, and 19 landmarks in cephalometric X-rays. We demonstrate that the method performs similarly to a second observer and is able to localize landmarks in a diverse set of medical images, differing in image modality, image dimensionality, and anatomical coverage.


Assuntos
Algoritmos , Aprendizado Profundo , Pontos de Referência Anatômicos/diagnóstico por imagem , Redes Neurais de Computação , Reprodutibilidade dos Testes
18.
Adv Nutr ; 11(5): 1364-1383, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32516803

RESUMO

Cephalic phase responses (CPRs) are conditioned anticipatory physiological responses to food cues. They occur before nutrient absorption and are hypothesized to be important for satiation and glucose homeostasis. Cephalic phase insulin responses (CPIRs) and pancreatic polypeptide responses (CPPPRs) are found consistently in animals, but human literature is inconclusive. We performed a systematic review of human studies to determine the magnitude and onset time of these CPRs. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were used to develop a search strategy. The terms included in the search strategy were cephalic or hormone response or endocrine response combined with insulin and pancreatic polypeptide (PP). The following databases were searched: Scopus (Elsevier), Science Direct, PubMed, Google Scholar, and The Cochrane Library. Initially, 582 original research articles were found, 50 were included for analysis. An insulin increase (≥1µIU/mL) was observed in 41% of the treatments (total n = 119). In 22% of all treatments the increase was significant from baseline. The median (IQR) insulin increase was 2.5 (1.6-4.5) µIU/mL, 30% above baseline at 5± 3 min  after food cue onset (based on study treatments that induced ≥1 µIU/mL insulin increase). A PP increase (>10 pg/mL) was found in 48% of the treatments (total n = 42). In 21% of the treatments, the increase was significant from baseline. The median (IQR) PP increase was 99 (26-156) pg/mL, 68% above baseline at 9± 4 min  after food cue onset (based on study treatments that induced ≥1 µIU/mL insulin increase). In conclusion, CPIRs are small compared with spontaneous fluctuations. Although CPPPRs are of a larger magnitude, both show substantial variation in magnitude and onset time. We found little evidence for CPIR or CPPPR affecting functional outcomes, that is, satiation and glucose homeostasis. Therefore, CPRs do not seem to be biologically meaningful in daily life.


Assuntos
Sinais (Psicologia) , Ingestão de Alimentos , Animais , Glicemia , Alimentos , Humanos , Insulina , Saciação
19.
Food Chem ; 330: 127182, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32526648

RESUMO

In this paper we report the importance of swelling on gastric digestion of protein gels, which is rarely recognized in literature. Whey protein gels with NaCl concentrations 0-0.1 M were used as model foods. The Young's modulus, swelling ratio, acid uptake and digestion rate of the gels were measured. Pepsin transport was observed by confocal laser scanning microscopy using green fluorescent protein (GFP). With the increase of NaCl in gels, Young's modulus increased, swelling was reduced and digestion was slower, with a reduction of acid transport and less GFP present both at surface and in the gels. This shows that swelling affects digestion rate by enhancing acid diffusion, but also by modulating the partitioning of pepsin at the food-gastric fluid interface and thereby the total amount of pepsin in the food particle. This perspective on swelling will provide new insight for designing food with specific digestion rate for targeted dietary demands.


Assuntos
Mucosa Gástrica , Proteínas do Soro do Leite/metabolismo , Difusão , Digestão , Módulo de Elasticidade , Alimentos , Géis/química , Pepsina A/metabolismo , Estômago , Proteínas do Soro do Leite/química
20.
Am J Clin Nutr ; 111(6): 1137-1149, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32320002

RESUMO

BACKGROUND: Longer oral processing decreases food intake. This can be attributed to greater oro-sensory exposure (OSE) and a lower eating rate (ER). How these factors contribute to food intake, and the underlying physiological mechanisms, remain unclear. OBJECTIVES: We aimed to determine the independent and simultaneous effects of OSE and ER on satiation and associated endocrine responses. METHODS: Forty participants in study 1 [mean ± SD age: 24 ± 4 y; BMI (in kg/m2): 22 ± 2] and 20 in study 2 (mean ± SD age: 23 ± 3 y; BMI: 23 ± 2) participated in a 2 × 2 randomized trial. In both studies, participants ate chocolate custard with added caramel sauce (low OSE) or caramel fudge (high OSE) and with short (fast ER) or long breaks (slow ER) in between bites, until fullness. In study 2, endocrine responses were measured during the meal. RESULTS: In study 1, participants ate (mean ± SEM) 42 ± 15 g less in the slow- than in the fast-ER condition, only within the high-OSE condition (P = 0.04). In study 2, participants ate 66 ± 21 g less in the high- than in the low-OSE condition and there were no intake differences between slow and fast ER (P = 0.35). Eight minutes after starting to eat, insulin concentrations increased by 42%-65% in all treatments compared with the control. At the end of the meal, insulin concentrations were 81% higher in the high-OSE, slow-ER than in the low-OSE, fast-ER condition (P = 0.049). Pancreatic polypeptide (PP) increased by 62%, 5 min after meal onset in the low-OSE, fast-ER condition (P = 0.005). Ghrelin concentrations did not change. CONCLUSIONS: Greater OSE increases insulin responsiveness. In contrast, PP responses are stronger when OSE is reduced and ER is fast. Insulin and PP responses may mediate the independent effects of OSE and ER on food intake. These may be beneficial eating strategies, particularly for type 2 diabetic patients, to control food intake and maintain glucose homeostasis.This trial was registered at trialregister.nl as NL6544.


Assuntos
Ingestão de Alimentos , Grelina/metabolismo , Insulina/metabolismo , Peptídeo YY/metabolismo , Saciação , Adulto , Apetite , Comportamento Alimentar , Feminino , Humanos , Masculino , Boca/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...