Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
medRxiv ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38699352

RESUMO

Background: Adolescent self-reported psychotic experiences are associated with mental illness and could help guide prevention strategies. The Community Assessment of Psychic Experiences (CAPE) was developed over 20 years ago. In a rapidly changing society, where new generations of adolescents are growing up in an increasingly digital world, it is crucial to ensure high reliability and validity of the questionnaire. Methods: In this observational validation study, we used unique transgenerational questionnaire and health registry data from the Norwegian Mother, Father, and Child Cohort, a population-based pregnancy cohort. Adolescents, aged ~14 years, responded to the CAPE-16 (n = 18,835) and fathers to the CAPE-9 questionnaire (n = 28,793). We investigated the psychometric properties of CAPE-16 through factor analyses, measurement invariance testing across biological sex, response before/ during the COVID-19 pandemic, and generations (comparison with fathers), and examined associations with later psychiatric diagnoses. Outcomes: One third (33·4%) of adolescents reported lifetime psychotic experiences. We confirmed a three-factor structure (paranoia, bizarre thoughts, and hallucinations) of CAPE-16, and observed good scale reliability of the distress and frequency subscales (ω = ·86 and ·90). CAPE-16 measured psychotic experiences were invariant to biological sex and pandemic status. CAPE-9 was non-invariant across generations, with items related to understanding of the digital world (electrical influences) prone to bias. CAPE-16 sum scores were associated with a subsequent psychiatric diagnosis, particularly psychotic disorders (frequency: OR = 2·06; 97·5% CI = 1·70-2·46; distress: OR = 1·93; 97·5% CI = 1·63-2·26). Interpretation: CAPE-16 showed robust psychometric properties across sex and pandemic status, and sum scores were associated with subsequent psychiatric diagnoses, particularly psychotic disorders. These findings suggest that with certain adjustments, CAPE-16 could have value as a screening tool for adolescents in the modern, digital world. Funding: European Union's Horizon 2020 Programme, Research Council of Norway, South-Eastern Norway Regional Health Authority, NIMH, and the KG Jebsen Stiftelsen.

2.
medRxiv ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38585944

RESUMO

Objective: Cognitive impairment is prevalent among individuals with epilepsy, and it is possible that genetic factors can underlie this relationship. Here, we investigated the potential shared genetic basis of common epilepsies and general cognitive ability (COG). Methods: We applied linkage disequilibrium score (LDSC) regression, MiXeR and conjunctional false discovery rate (conjFDR) to analyze different aspects of genetic overlap between COG and epilepsies. We used the largest available genome-wide association study data on COG (n = 269,867) and common epilepsies (n = 27,559 cases, 42,436 controls), including the broad phenotypes 'all epilepsy', focal epilepsies and genetic generalized epilepsies (GGE), and as well as specific subtypes. We functionally annotated the identified loci using a variety of biological resources and validated the results in independent samples. Results: Using MiXeR, COG (11.2k variants) was estimated to be almost four times more polygenic than 'all epilepsy', GGE, juvenile myoclonic epilepsy (JME), and childhood absence epilepsy (CAE) (2.5k - 2.9k variants). The other epilepsy phenotypes were insufficiently powered for analysis. We show extensive genetic overlap between COG and epilepsies with significant negative genetic correlations (-0.23 to -0.04). COG was estimated to share 2.9k variants with both GGE and 'all epilepsy', and 2.3k variants with both JME and CAE. Using conjFDR, we identified 66 distinct loci shared between COG and epilepsies, including novel associations for GGE (27), 'all epilepsy' (5), JME (5) and CAE (5). The implicated genes were significantly expressed in multiple brain regions. The results were validated in independent samples (COG: p = 1.0 × 10-14; 'all epilepsy': p = 5.6 × 10-3). Significance: Our study demonstrates a substantial genetic basis shared between epilepsies and COG and identifies novel overlapping genomic loci. Enhancing our understanding of the relationship between epilepsies and COG may lead to the development of novel comorbidity-targeted epilepsy treatments.

3.
medRxiv ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38464132

RESUMO

Comorbidities are an increasing global health challenge. Accumulating evidence suggests overlapping genetic architectures underlying comorbid complex human traits and disorders. The bivariate causal mixture model (MiXeR) can quantify the polygenic overlap between complex phenotypes beyond global genetic correlation. Still, the pattern of genetic overlap between three distinct phenotypes, which is important to better characterize multimorbidities, has previously not been possible to quantify. Here, we present and validate the trivariate MiXeR tool, which disentangles the pattern of genetic overlap between three phenotypes using summary statistics from genome-wide association studies (GWAS). Our simulations show that the trivariate MiXeR can reliably reconstruct different patterns of genetic overlap. We further demonstrate how the tool can be used to estimate the proportions of genetic overlap between three phenotypes using real GWAS data, providing examples of complex patterns of genetic overlap between diverse human traits and diseases that could not be deduced from bivariate analyses. This contributes to a better understanding of the etiology of complex phenotypes and the nature of their relationship, which may aid in dissecting comorbidity patterns and their biological underpinnings.

5.
Neuropsychopharmacology ; 49(7): 1113-1119, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38184734

RESUMO

Genomic prediction of antipsychotic dose and polypharmacy has been difficult, mainly due to limited access to large cohorts with genetic and drug prescription data. In this proof of principle study, we investigated if genetic liability for schizophrenia is associated with high dose requirements of antipsychotics and antipsychotic polypharmacy, using real-world registry and biobank data from five independent Nordic cohorts of a total of N = 21,572 individuals with psychotic disorders (schizophrenia, bipolar disorder, and other psychosis). Within regression models, a polygenic risk score (PRS) for schizophrenia was studied in relation to standardized antipsychotic dose as well as antipsychotic polypharmacy, defined based on longitudinal prescription registry data as well as health records and self-reported data. Meta-analyses across the five cohorts showed that PRS for schizophrenia was significantly positively associated with prescribed (standardized) antipsychotic dose (beta(SE) = 0.0435(0.009), p = 0.0006) and antipsychotic polypharmacy defined as taking ≥2 antipsychotics (OR = 1.10, CI = 1.05-1.21, p = 0.0073). The direction of effect was similar in all five independent cohorts. These findings indicate that genotypes may aid clinically relevant decisions on individual patients´ antipsychotic treatment. Further, the findings illustrate how real-world data have the potential to generate results needed for future precision medicine approaches in psychiatry.


Assuntos
Antipsicóticos , Bancos de Espécimes Biológicos , Herança Multifatorial , Polimedicação , Sistema de Registros , Esquizofrenia , Humanos , Antipsicóticos/administração & dosagem , Antipsicóticos/uso terapêutico , Masculino , Feminino , Esquizofrenia/tratamento farmacológico , Esquizofrenia/genética , Pessoa de Meia-Idade , Adulto , Transtornos Psicóticos/tratamento farmacológico , Transtornos Psicóticos/genética , Estudos de Coortes , Idoso
6.
Drug Alcohol Depend ; 256: 111058, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38244365

RESUMO

BACKGROUND: Opioid use disorder (OUD), a serious health burden worldwide, is associated with lower cognitive function. Recent studies have demonstrated a negative genetic correlation between OUD and general cognitive ability (COG), indicating a shared genetic basis. However, the specific genetic variants involved, and the underlying molecular mechanisms remain poorly understood. Here, we aimed to quantify and identify the genetic basis underlying OUD and COG. METHODS: We quantified the extent of genetic overlap between OUD and COG using a bivariate causal mixture model (MiXeR) and identified specific genetic loci applying conditional/conjunctional FDR. Finally, we investigated biological function and expression of implicated genes using available resources. RESULTS: We estimated that ~94% of OUD variants (4.8k out of 5.1k variants) also influence COG. We identified three novel OUD risk loci and one locus shared between OUD and COG. Loci identified implicated biological substrates in the basal ganglia. CONCLUSION: We provide new insights into the complex genetic risk architecture of OUD and its genetic relationship with COG.


Assuntos
Estudo de Associação Genômica Ampla , Transtornos Relacionados ao Uso de Opioides , Humanos , Cognição , Transtornos Relacionados ao Uso de Opioides/genética
7.
medRxiv ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37693403

RESUMO

Background: Anxiety disorders are prevalent and anxiety symptoms co-occur with many psychiatric disorders. We aimed to identify genomic risk loci associated with anxiety, characterize its genetic architecture, and genetic overlap with psychiatric disorders. Methods: We used the GWAS of anxiety symptoms, schizophrenia, bipolar disorder, major depression, and attention deficit hyperactivity disorder (ADHD). We employed MiXeR and LAVA to characterize the genetic architecture and genetic overlap between the phenotypes. Conditional and conjunctional false discovery rate analyses were performed to boost the identification of genomic loci associated with anxiety and those shared with psychiatric disorders. Gene annotation and gene set analyses were conducted using OpenTargets and FUMA, respectively. Results: Anxiety was polygenic with 12.9k estimated genetic risk variants and overlapped extensively with psychiatric disorders (4.1-11.4k variants). MiXeR and LAVA revealed predominantly positive genetic correlations between anxiety and psychiatric disorders. We identified 114 novel loci for anxiety by conditioning on the psychiatric disorders. We also identified loci shared between anxiety and major depression (n = 47), bipolar disorder (n = 33), schizophrenia (n = 71), and ADHD (n = 20). Genes annotated to anxiety loci exhibit enrichment for a broader range of biological pathways and differential tissue expression in more diverse tissues than those annotated to the shared loci. Conclusions: Anxiety is a highly polygenic phenotype with extensive genetic overlap with psychiatric disorders. These genetic overlaps enabled the identification of novel loci for anxiety. The shared genetic architecture may underlie the extensive cross-disorder comorbidity of anxiety, and the identified genetic loci implicate molecular pathways that may lead to potential drug targets.

8.
Biol Psychiatry ; 95(7): 687-698, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37661009

RESUMO

BACKGROUND: Schizophrenia (SCZ) has a known neurodevelopmental etiology, but limited access to human prenatal brain tissue hampers the investigation of basic disease mechanisms in early brain development. Here, we elucidate the molecular mechanisms contributing to SCZ risk in a disease-relevant model of the prenatal human brain. METHODS: We generated induced pluripotent stem cell-derived organoids, termed human cortical spheroids (hCSs), from a large, genetically stratified sample of 14 SCZ cases and 14 age- and sex-matched controls. The hCSs were differentiated for 150 days, and comprehensive molecular characterization across 4 time points was carried out. RESULTS: The transcriptional and cellular architecture of hCSs closely resembled that of fetal brain tissue at 10 to 24 postconception weeks, showing strongest spatial overlap with frontal regions of the cerebral cortex. A total of 3520 genes were differentially modulated between SCZ and control hCSs across organoid maturation, displaying a significant contribution of genetic loading, an overrepresentation of risk genes for autism spectrum disorder and SCZ, and the strongest enrichment for axonal processes in all hCS stages. The two axon guidance genes SEMA7A and SEMA5A, the first a promoter of synaptic functions and the second a repressor, were downregulated and upregulated, respectively, in SCZ hCSs. This expression pattern was confirmed at the protein level and replicated in a large postmortem sample. CONCLUSIONS: Applying a disease-relevant model of the developing fetal brain, we identified consistent dysregulation of axonal genes as an early risk factor for SCZ, providing novel insights into the effects of genetic predisposition on the neurodevelopmental origins of the disorder.


Assuntos
Transtorno do Espectro Autista , Esquizofrenia , Humanos , Esquizofrenia/genética , Esquizofrenia/metabolismo , Transtorno do Espectro Autista/genética , Encéfalo/metabolismo , Córtex Cerebral/metabolismo , Perfilação da Expressão Gênica , Fatores de Risco , Predisposição Genética para Doença
9.
Schizophr Bull ; 50(2): 327-338, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-37824720

RESUMO

BACKGROUND: Schizophrenia is a highly heritable brain disorder with a typical symptom onset in early adulthood. The 2-hit hypothesis posits that schizophrenia results from differential early neurodevelopment, predisposing an individual, followed by a disruption of later brain maturational processes that trigger the onset of symptoms. STUDY DESIGN: We applied hierarchical clustering to transcription levels of 345 genes previously linked to schizophrenia, derived from cortical tissue samples from 56 donors across the lifespan. We subsequently calculated clustered-specific polygenic risk scores for 743 individuals with schizophrenia and 743 sex- and age-matched healthy controls. STUDY RESULTS: Clustering revealed a set of 183 genes that was significantly upregulated prenatally and downregulated postnatally and 162 genes that showed the opposite pattern. The prenatally upregulated set of genes was functionally annotated to fundamental cell cycle processes, while the postnatally upregulated set was associated with the immune system and neuronal communication. We found an interaction between the 2 scores; higher prenatal polygenic risk showed a stronger association with schizophrenia diagnosis at higher levels of postnatal polygenic risk. Importantly, this finding was replicated in an independent clinical cohort of 3233 individuals. CONCLUSIONS: We provide genetics-based evidence that schizophrenia is shaped by disruptions of separable biological processes acting at distinct phases of neurodevelopment. The modeling of genetic risk factors that moderate each other's effect, informed by the timing of their expression, will aid in a better understanding of the development of schizophrenia.


Assuntos
Esquizofrenia , Humanos , Adulto , Esquizofrenia/genética , Encéfalo , Estratificação de Risco Genético , Herança Multifatorial , Análise por Conglomerados , Predisposição Genética para Doença
10.
medRxiv ; 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38014326

RESUMO

Cognitive impairment is a major determinant of functional outcomes in schizophrenia, and efforts to understand the biological basis of cognitive dysfunction in the disorder are ongoing. Previous studies have suggested genetic overlap between global cognitive ability and schizophrenia, but further work is needed to delineate the shared genetic architecture. Here, we apply genomic structural equation modelling to identify latent cognitive factors capturing genetic liabilities to 12 cognitive traits measured in the UK Biobank (UKB). We explore the overlap between latent cognitive factors, schizophrenia, and schizophrenia symptom dimensions using a complementary set of statistical approaches, applied to data from the latest schizophrenia genome-wide association study (Ncase = 53,386, Ncontrol = 77,258) and the Thematically Organised Psychosis study (Ncase = 306, Ncontrol = 1060). We identified three broad factors (visuo-spatial, verbal analytic and decision/reaction time) that underly the genetic correlations between the UKB cognitive tests. Global genetic correlations showed a significant but moderate negative genetic correlation between each cognitive factor and schizophrenia. Local genetic correlations implicated unique genomic regions underlying the overlap between schizophrenia and each cognitive factor. We found evidence of substantial polygenic overlap between each cognitive factor and schizophrenia but show that most loci shared between the latent cognitive factors and schizophrenia have unique patterns of association with the cognitive factors. Biological annotation of the shared loci implicated gene-sets related to neurodevelopment and neuronal function. Lastly, we find that the common genetic determinants of the latent cognitive factors are not predictive of schizophrenia symptom dimensions. Overall, these findings inform our understanding of cognitive function in schizophrenia by demonstrating important differences in the shared genetic architecture of schizophrenia and cognitive abilities.

11.
Mol Psychiatry ; 28(11): 4924-4932, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37759039

RESUMO

Improved understanding of the shared genetic architecture between psychiatric disorders and brain white matter may provide mechanistic insights for observed phenotypic associations. Our objective is to characterize the shared genetic architecture of bipolar disorder (BD), major depression (MD), and schizophrenia (SZ) with white matter fractional anisotropy (FA) and identify shared genetic loci to uncover biological underpinnings. We used genome-wide association study (GWAS) summary statistics for BD (n = 413,466), MD (n = 420,359), SZ (n = 320,404), and white matter FA (n = 33,292) to uncover the genetic architecture (i.e., polygenicity and discoverability) of each phenotype and their genetic overlap (i.e., genetic correlations, overlapping trait-influencing variants, and shared loci). This revealed that BD, MD, and SZ are at least 7-times more polygenic and less genetically discoverable than average FA. Even in the presence of weak genetic correlations (range = -0.05 to -0.09), average FA shared an estimated 42.5%, 43.0%, and 90.7% of trait-influencing variants as well as 12, 4, and 28 shared loci with BD, MD, and SZ, respectively. Shared variants were mapped to genes and tested for enrichment among gene-sets which implicated neurodevelopmental expression, neural cell types, myelin, and cell adhesion molecules. For BD and SZ, case vs control tract-level differences in FA associated with genetic correlations between those same tracts and the respective disorder (rBD = 0.83, p = 4.99e-7 and rSZ = 0.65, p = 5.79e-4). Genetic overlap at the tract-level was consistent with average FA results. Overall, these findings suggest a genetic basis for the involvement of brain white matter aberrations in the pathophysiology of psychiatric disorders.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Substância Branca , Humanos , Estudo de Associação Genômica Ampla , Imagem de Tensor de Difusão/métodos , Transtorno Bipolar/genética , Transtorno Depressivo Maior/genética
12.
Am J Psychiatry ; 180(11): 815-826, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37752828

RESUMO

OBJECTIVE: Schizophrenia is associated with increased risk of cardiovascular disease (CVD), although there is variation in risk among individuals. There are indications of shared genetic etiology between schizophrenia and CVD, but the nature of the overlap remains unclear. The aim of this study was to fill this gap in knowledge. METHODS: Overlapping genetic architectures between schizophrenia and CVD risk factors were assessed by analyzing recent genome-wide association study (GWAS) results. The bivariate causal mixture model (MiXeR) was applied to estimate the number of shared variants and the conjunctional false discovery rate (conjFDR) approach was used to pinpoint specific shared loci. RESULTS: Extensive genetic overlap was found between schizophrenia and CVD risk factors, particularly smoking initiation (N=8.6K variants) and body mass index (BMI) (N=8.1K variants). Several specific shared loci were detected between schizophrenia and BMI (N=304), waist-to-hip ratio (N=193), smoking initiation (N=293), systolic (N=294) and diastolic (N=259) blood pressure, type 2 diabetes (N=147), lipids (N=471), and coronary artery disease (N=35). The schizophrenia risk loci shared with smoking initiation had mainly concordant effect directions, and the risk loci shared with BMI had mainly opposite effect directions. The overlapping loci with lipids, blood pressure, waist-to-hip ratio, type 2 diabetes, and coronary artery disease had mixed effect directions. Functional analyses implicated mapped genes that are expressed in brain tissue and immune cells. CONCLUSIONS: These findings indicate a genetic propensity to smoking and a reduced genetic risk of obesity among individuals with schizophrenia. The bidirectional effects of the shared loci with the other CVD risk factors may imply differences in genetic liability to CVD across schizophrenia subgroups, possibly underlying the variation in CVD comorbidity.


Assuntos
Doenças Cardiovasculares , Doença da Artéria Coronariana , Diabetes Mellitus Tipo 2 , Esquizofrenia , Humanos , Doenças Cardiovasculares/genética , Doença da Artéria Coronariana/genética , Diabetes Mellitus Tipo 2/genética , Estudo de Associação Genômica Ampla/métodos , Esquizofrenia/genética , Fatores de Risco , Lipídeos , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único/genética , Loci Gênicos/genética
13.
Psychoneuroendocrinology ; 157: 106368, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37659117

RESUMO

C-reactive protein (CRP) tends to be elevated in individuals with psychiatric disorders. Recent findings have suggested a protective effect of the genetic liability to elevated CRP on schizophrenia risk and a causative effect on depression despite weak genetic correlations, while causal relationships with bipolar disorder were inconclusive. We investigated the shared genetic underpinnings of psychiatric disorders and variation in CRP levels. Genome-wide association studies for CRP (n = 575,531), bipolar disorder (n = 413,466), depression (n = 480,359), and schizophrenia (n = 130,644) were used in causal mixture models to compare CRP with psychiatric disorders based on polygenicity, discoverability, and genome-wide genetic overlap. The conjunctional false discovery rate method was used to identify specific shared genetic loci. Shared variants were mapped to putative causal genes, which were tested for overrepresentation among gene ontology gene-sets. CRP was six to ten times less polygenic (n = 1400 vs 8600-14,500 variants) and had a discoverability one to two orders of magnitude higher than psychiatric disorders. Most CRP-associated variants were overlapping with psychiatric disorders. We identified 401 genetic loci jointly associated with CRP and psychiatric disorders with mixed effect directions. Gene-set enrichment analyses identified predominantly CNS-related gene sets for CRP and each of depression and schizophrenia, and basic cellular processes for CRP and bipolar disorder. In conclusion, CRP has a markedly different genetic architecture to psychiatric disorders, but the majority of CRP associated variants are also implicated in psychiatric disorders. Shared genetic loci implicated CNS-related processes to a greater extent than immune processes, which may have implications for how we conceptualise causal relationships between CRP and psychiatric disorders.


Assuntos
Transtorno Bipolar , Transtornos Mentais , Esquizofrenia , Humanos , Proteína C-Reativa/genética , Estudo de Associação Genômica Ampla , Transtornos Mentais/genética , Esquizofrenia/genética , Transtorno Bipolar/genética , Transtorno Bipolar/psicologia , Polimorfismo de Nucleotídeo Único/genética , Predisposição Genética para Doença/genética
14.
Transl Psychiatry ; 13(1): 291, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37658054

RESUMO

Anorexia nervosa (AN) is a heritable eating disorder (50-60%) with an array of commonly comorbid psychiatric disorders and related traits. Although significant genetic correlations between AN and psychiatric disorders and related traits have been reported, their shared genetic architecture is largely understudied. We investigated the shared genetic architecture of AN and schizophrenia (SCZ), bipolar disorder (BIP), major depression (MD), mood instability (Mood), neuroticism (NEUR), and intelligence (INT). We applied the conditional false discovery rate (FDR) method to identify novel risk loci for AN, and conjunctional FDR to identify loci shared between AN and related phenotypes, to summarize statistics from relevant genome-wide association studies (GWAS). Individual GWAS samples varied from 72,517 to 420,879 participants. Using conditional FDR we identified 58 novel AN loci. Furthermore, we identified 38 unique loci shared between AN and major psychiatric disorders (SCZ, BIP, and MD) and 45 between AN and psychological traits (Mood, NEUR, and INT). In line with genetic correlations, the majority of shared loci showed concordant effect directions. Functional analyses revealed that the shared loci are involved in 65 unique pathways, several of which overlapped across analyses, including the "signal by MST1" pathway involved in Hippo signaling. In conclusion, we demonstrated genetic overlap between AN and major psychiatric disorders and related traits, and identified novel risk loci for AN by leveraging this overlap. Our results indicate that some shared characteristics between AN and related disorders and traits may have genetic underpinnings.


Assuntos
Anorexia Nervosa , Transtorno Bipolar , Transtorno Depressivo Maior , Humanos , Anorexia Nervosa/genética , Estudo de Associação Genômica Ampla , Transtorno Bipolar/genética , Transtorno Depressivo Maior/genética , Fenótipo
15.
Genome Med ; 15(1): 60, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528461

RESUMO

BACKGROUND: Irritable bowel syndrome (IBS) often co-occurs with psychiatric and gastrointestinal disorders. A recent genome-wide association study (GWAS) identified several genetic risk variants for IBS. However, most of the heritability remains unidentified, and the genetic overlap with psychiatric and somatic disorders is not quantified beyond genome-wide genetic correlations. Here, we characterize the genetic architecture of IBS, further, investigate its genetic overlap with psychiatric and gastrointestinal phenotypes, and identify novel genomic risk loci. METHODS: Using GWAS summary statistics of IBS (53,400 cases and 433,201 controls), and psychiatric and gastrointestinal phenotypes, we performed bivariate casual mixture model analysis to characterize the genetic architecture and genetic overlap between these phenotypes. We leveraged identified genetic overlap to boost the discovery of genomic loci associated with IBS, and to identify specific shared loci associated with both IBS and psychiatric and gastrointestinal phenotypes, using the conditional/conjunctional false discovery rate (condFDR/conjFDR) framework. We used functional mapping and gene annotation (FUMA) for functional analyses. RESULTS: IBS was highly polygenic with 12k trait-influencing variants. We found extensive polygenic overlap between IBS and psychiatric disorders and to a lesser extent with gastrointestinal diseases. We identified 132 independent IBS-associated loci (condFDR < 0.05) by conditioning on psychiatric disorders (n = 127) and gastrointestinal diseases (n = 24). Using conjFDR, 70 unique loci were shared between IBS and psychiatric disorders. Functional analyses of shared loci revealed enrichment for biological pathways of the nervous and immune systems. Genetic correlations and shared loci between psychiatric disorders and IBS subtypes were different. CONCLUSIONS: We found extensive polygenic overlap of IBS and psychiatric and gastrointestinal phenotypes beyond what was revealed with genetic correlations. Leveraging the overlap, we discovered genetic loci associated with IBS which implicate a wide range of biological pathways beyond the gut-brain axis. Genetic differences may underlie the clinical subtype of IBS. These results increase our understanding of the pathophysiology of IBS which may form the basis for the development of individualized interventions.


Assuntos
Gastroenteropatias , Síndrome do Intestino Irritável , Transtornos Mentais , Humanos , Síndrome do Intestino Irritável/genética , Síndrome do Intestino Irritável/complicações , Eixo Encéfalo-Intestino , Estudo de Associação Genômica Ampla , Transtornos Mentais/genética , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença
16.
medRxiv ; 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37503175

RESUMO

While neurological and psychiatric disorders have historically been considered to reflect distinct pathogenic entities, recent findings suggest shared pathobiological mechanisms. However, the extent to which these heritable disorders share genetic influences remains unclear. Here, we performed a comprehensive analysis of GWAS data, involving nearly 1 million cases across ten neurological diseases and ten psychiatric disorders, to compare their common genetic risk and biological underpinnings. Using complementary statistical tools, we demonstrate widespread genetic overlap across the disorders, even in the absence of genetic correlations. This indicates that a large set of common variants impact risk of multiple neurological and psychiatric disorders, but with divergent effect sizes. Furthermore, biological interrogation revealed a range of biological processes associated with neurological diseases, while psychiatric disorders consistently implicated neuronal biology. Altogether, the study indicates that neurological and psychiatric disorders share key etiological aspects, which has important implications for disease classification, precision medicine, and clinical practice.

17.
Cell Rep ; 42(8): 112896, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37505983

RESUMO

The impact of chromosomal inversions on human brain morphology remains underexplored. We studied 35 common inversions classified from genotypes of 33,018 adults with European ancestry. The inversions at 2p22.3, 16p11.2, and 17q21.31 reach genome-wide significance, followed by 8p23.1 and 6p21.33, in their association with cortical and subcortical morphology. The 17q21.31, 8p23.1, and 16p11.2 regions comprise the LRRC37, OR7E, and NPIP duplicated gene families. We find the 17q21.31 MAPT inversion region, known for harboring neurological risk, to be the most salient locus among common variants for shaping and patterning the cortex. Overall, we observe the inverted orientations decreasing brain size, with the exception that the 2p22.3 inversion is associated with increased subcortical volume and the 8p23.1 inversion is associated with increased motor cortex. These significant inversions are in the genomic hotspots of neuropsychiatric loci. Our findings are generalizable to 3,472 children and demonstrate inversions as essential genetic variation to understand human brain phenotypes.


Assuntos
Inversão Cromossômica , Polimorfismo Genético , Adulto , Criança , Humanos , Inversão Cromossômica/genética , Encéfalo
18.
Schizophr Bull ; 49(5): 1229-1238, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37262330

RESUMO

BACKGROUND AND HYPOTHESIS: Around 5%-7% of the adult population are estimated to have lifetime psychotic experiences (PEs), which are associated with psychosis risk. PEs assessed with Community Assessment of Psychic Experiences (CAPE) are associated with psychosis but also non-psychotic disorders, which could be partly explained by CAPE indirectly capturing emotional symptoms. We investigated the psychometric properties of a shorter version, CAPE-9, and whether CAPE-9 scores are associated with lifetime psychotic or non-psychotic mental disorders after controlling for current anxiety and depressive symptoms. DESIGN: CAPE-9 questionnaire data were obtained from 29 021 men (42.4 ± 5.6 yrs.) from the Norwegian Mother, Father, and Child Cohort Study. We investigated CAPE-9 reliability and factor structure. Logistic regression was used to test effects of current anxiety and depressive symptoms (SCL-12) on associations between CAPE-9 scores and psychiatric diagnoses. RESULTS: CAPE-9 fit a previously reported 3-factor structure and showed good reliability. Twenty-six percent reported at least one lifetime PE. CAPE-9 scores were significantly associated with most psychiatric disorders (schizophrenia, depression, bipolar disorder, substance abuse, anxiety, trauma-related disorders, and ADHD). After controlling for concurrent emotional symptoms, only associations with schizophrenia (OR = 1.29; 95% CI = 1.18-1.38) and trauma-related disorders (OR = 1.09; CI = 1.02-1.15) remained significant. CONCLUSIONS: CAPE-9 showed good psychometric properties in this large population-based adult male sample, and PEs were more clearly associated with psychotic disorders after controlling for current emotional symptoms. These results support the use of the short CAPE-9 as a cost-effective tool for informing public health initiatives and advancing our understanding of the dimensionality of psychosis.


Assuntos
Transtornos Psicóticos , Esquizofrenia , Criança , Humanos , Masculino , Adulto , Estudos de Coortes , Psicometria , Reprodutibilidade dos Testes , Transtornos Psicóticos/psicologia
19.
Schizophr Bull ; 49(5): 1345-1354, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37319439

RESUMO

BACKGROUND: Immune mechanisms are indicated in schizophrenia (SCZ). Recent genome-wide association studies (GWAS) have identified genetic variants associated with SCZ and immune-related phenotypes. Here, we use cutting edge statistical tools to identify shared genetic variants between SCZ and white blood cell (WBC) counts and further understand the role of the immune system in SCZ. STUDY DESIGN: GWAS results from SCZ (patients, n = 53 386; controls, n = 77 258) and WBC counts (n = 56 3085) were analyzed. We applied linkage disequilibrium score regression, the conditional false discovery rate method and the bivariate causal mixture model for analyses of genetic associations and overlap, and 2 sample Mendelian randomization to estimate causal effects. STUDY RESULTS: The polygenicity for SCZ was 7.5 times higher than for WBC count and constituted 32%-59% of WBC count genetic loci. While there was a significant but weak positive genetic correlation between SCZ and lymphocytes (rg = 0.05), the conditional false discovery rate method identified 383 shared genetic loci (53% concordant effect directions), with shared variants encompassing all investigated WBC subtypes: lymphocytes, n = 215 (56% concordant); neutrophils, n = 158 (49% concordant); monocytes, n = 146 (47% concordant); eosinophils, n = 135 (56% concordant); and basophils, n = 64 (53% concordant). A few causal effects were suggested, but consensus was lacking across different Mendelian randomization methods. Functional analyses indicated cellular functioning and regulation of translation as overlapping mechanisms. CONCLUSIONS: Our results suggest that genetic factors involved in WBC counts are associated with the risk of SCZ, indicating a role of immune mechanisms in subgroups of SCZ with potential for stratification of patients for immune targeted treatment.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/genética , Estudo de Associação Genômica Ampla , Loci Gênicos , Fenótipo , Contagem de Leucócitos , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único
20.
Nat Hum Behav ; 7(9): 1584-1600, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37365406

RESUMO

Personality and cognitive function are heritable mental traits whose genetic foundations may be distributed across interconnected brain functions. Previous studies have typically treated these complex mental traits as distinct constructs. We applied the 'pleiotropy-informed' multivariate omnibus statistical test to genome-wide association studies of 35 measures of neuroticism and cognitive function from the UK Biobank (n = 336,993). We identified 431 significantly associated genetic loci with evidence of abundant shared genetic associations, across personality and cognitive function domains. Functional characterization implicated genes with significant tissue-specific expression in all tested brain tissues and brain-specific gene sets. We conditioned independent genome-wide association studies of the Big 5 personality traits and cognitive function on our multivariate findings, boosting genetic discovery in other personality traits and improving polygenic prediction. These findings advance our understanding of the polygenic architecture of these complex mental traits, indicating a prominence of pleiotropic genetic effects across higher order domains of mental function such as personality and cognitive function.


Assuntos
Estudo de Associação Genômica Ampla , Personalidade , Humanos , Personalidade/genética , Fenótipo , Herança Multifatorial/genética , Cognição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...