Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 5(1): 893, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36100689

RESUMO

Choroideremia is an X-linked, blinding retinal degeneration with progressive loss of photoreceptors, retinal pigment epithelial (RPE) cells, and choriocapillaris. To study the extent to which these layers are disrupted in affected males and female carriers, we performed multimodal adaptive optics imaging to better visualize the in vivo pathogenesis of choroideremia in the living human eye. We demonstrate the presence of subclinical, widespread enlarged RPE cells present in all subjects imaged. In the fovea, the last area to be affected in choroideremia, we found greater disruption to the RPE than to either the photoreceptor or choriocapillaris layers. The unexpected finding of patches of photoreceptors that were fluorescently-labeled, but structurally and functionally normal, suggests that the RPE blood barrier function may be altered in choroideremia. Finally, we introduce a strategy for detecting enlarged cells using conventional ophthalmic imaging instrumentation. These findings establish that there is subclinical polymegathism of RPE cells in choroideremia.


Assuntos
Coroideremia , Degeneração Retiniana , Corioide/diagnóstico por imagem , Coroideremia/genética , Coroideremia/patologia , Feminino , Humanos , Masculino , Óptica e Fotônica , Células Fotorreceptoras Retinianas Cones , Degeneração Retiniana/patologia
3.
Methods Mol Biol ; 2304: 131-145, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34028714

RESUMO

The identification of cellular changes that accompany immune activation has been a long-standing interest for immunologists. Among these, alterations in the metabolic states of these cells have gained particular attention in the last decade due to the emergence of the field of immunometabolism. A thorough investigation of these metabolic changes can only be achieved with an in-depth visualization of mitochondrial organization; however, current strategies for mitochondrial imaging have been optimized in model cells with a high cytoplasm-to-nucleus ratio and thus are not readily adaptable for many immune cells. Here, we devised a multicolor high-resolution microscopy strategy to image mitochondrial morphology in lymphocytes at both their resting and activated states. Our method allowed us to stain both the mitochondrial surface (by targeting TOM-20) and the mitochondrial matrix (through the use of Mitotracker dyes) while efficiently excluding nonviable cells. Our novel imaging strategy offers a powerful tool to study changes in mitochondrial morphology and complements any research focusing on lymphocyte metabolism.


Assuntos
Linfócitos/metabolismo , Microscopia Confocal/métodos , Mitocôndrias/metabolismo , Animais , Camundongos , Imagem Molecular , Software , Baço/imunologia
4.
Mucosal Immunol ; 14(4): 937-948, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33731830

RESUMO

Microbial translocation contributes to persistent inflammation in both treated and untreated HIV infection. Although translocation is due in part to a disintegration of the intestinal epithelial barrier, there is a bias towards the translocation of Proteobacteria. We hypothesized that intestinal epithelial microvesicle cargo differs after HIV infection and contributes to biased translocation. We isolated gastrointestinal luminal microvesicles before and after progressive simian immunodeficiency virus (SIV) infection in rhesus macaques and measured miRNA and antimicrobial peptide content. We demonstrate that these microvesicles display decreased miR-28-5p, -484, -584-3p, and -584-5p, and let-7b-3p, as well as increased beta-defensin 1 after SIV infection. We further observed dose-dependent growth sensitivity of commensal Lactobacillus salivarius upon co-culture with isolated microvesicles. Infection-associated microvesicle differences were not mirrored in non-progressively SIV-infected sooty mangabeys. Our findings describe novel alterations of antimicrobial control after progressive SIV infection that influence the growth of translocating bacterial taxa. These studies may lead to the development of novel therapeutics for treating chronic HIV infection, microbial translocation, and inflammation.


Assuntos
Translocação Bacteriana , Disbiose/etiologia , Vesículas Extracelulares/metabolismo , Microbioma Gastrointestinal , Síndrome de Imunodeficiência Adquirida dos Símios/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia , Animais , Biomarcadores , Progressão da Doença , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Macaca mulatta , MicroRNAs/genética , Síndrome de Imunodeficiência Adquirida dos Símios/complicações
5.
Nat Commun ; 12(1): 1750, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33741942

RESUMO

Malaria elimination requires tools that interrupt parasite transmission. Here, we characterize B cell receptor responses among Malian adults vaccinated against the first domain of the cysteine-rich 230 kDa gamete surface protein Pfs230, a key protein in sexual stage development of P. falciparum parasites. Among nine Pfs230 human monoclonal antibodies (mAbs) that we generated, one potently blocks transmission to mosquitoes in a complement-dependent manner and reacts to the gamete surface; the other eight show only low or no blocking activity. The structure of the transmission-blocking mAb in complex with vaccine antigen reveals a large discontinuous conformational epitope, specific to domain 1 of Pfs230 and comprising six structural elements in the protein. The epitope is conserved, suggesting the transmission-blocking mAb is broadly functional. This study provides a rational basis to improve malaria vaccines and develop therapeutic antibodies for malaria elimination.


Assuntos
Anticorpos Monoclonais/farmacologia , Anticorpos Antiprotozoários/farmacologia , Epitopos/imunologia , Células Germinativas/imunologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum/efeitos dos fármacos , Adulto , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/química , Antígenos de Protozoários/imunologia , Sítios de Ligação , Células Cultivadas , Epitopos/química , Interações Hospedeiro-Parasita/efeitos dos fármacos , Interações Hospedeiro-Parasita/imunologia , Humanos , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/imunologia , Malária Falciparum/parasitologia , Malária Falciparum/transmissão , Mosquitos Vetores/parasitologia , Plasmodium falciparum/imunologia , Plasmodium falciparum/fisiologia , Conformação Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/imunologia
6.
J Invest Dermatol ; 140(11): 2210-2220.e5, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32222457

RESUMO

A role for the adhesion G-protein coupled receptor ADGRE2 or EMR2 in mechanosensing was revealed by the finding of a missense substitution (p.C492Y) associated with familial vibratory urticaria. In these patients, friction of the skin induces mast cell hyper-degranulation through p.C492Y-ADGRE2, causing localized hives, flushing, and hypotension. We have now characterized the responses and intracellular signals elicited by mechanical activation in human mast cells expressing p.C492Y-ADGRE2 and attached to dermatan sulfate, a ligand for ADGRE2. The presence of p.C492Y-ADGRE2 reduced the threshold to activation and increased the extent of degranulation along with the percentage of mast cells responding. Vibration caused phospholipase C activation, transient increases in cytosolic calcium, and downstream activation of phosphoinositide 3-kinase and extracellular signal-regulated kinases 1 and 2 by Gßγ, Gαq/11, and Gαi/o-independent mechanisms. Degranulation induced by vibration was dependent on phospholipase C pathways, including calcium, protein kinase C, and phosphoinositide 3-kinase but not extracellular signal-regulated kinases 1/2 pathways, along with pertussis toxin-sensitive signals. In addition, mechanoactivation of mast cells stimulated the synthesis and release of prostaglandin D2, to our knowledge a previously unreported mediator in vibratory urticaria, and extracellular signal-regulated kinases 1/2 activation was required for this response together with calcium, protein kinase C, and to some extent, phosphoinositide 3-kinase. Our studies thus identified critical molecular events initiated by mechanical forces and potential therapeutic targets for patients with vibratory urticaria.


Assuntos
Mastócitos/fisiologia , Receptores Acoplados a Proteínas G/genética , Urticária/etiologia , Cálcio/metabolismo , Degranulação Celular , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Humanos , Mecanotransdução Celular , Mutação de Sentido Incorreto , Fosfatidilinositol 3-Quinases/fisiologia , Prostaglandina D2/fisiologia , Proteína Quinase C/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Transdução de Sinais/fisiologia , Tetraspanina 30/fisiologia , Fosfolipases Tipo C/fisiologia , Urticária/genética , Vibração/efeitos adversos
7.
Nat Biotechnol ; 38(3): 320-332, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31932728

RESUMO

Personalized cancer vaccines targeting patient-specific neoantigens are a promising cancer treatment modality; however, neoantigen physicochemical variability can present challenges to manufacturing personalized cancer vaccines in an optimal format for inducing anticancer T cells. Here, we developed a vaccine platform (SNP-7/8a) based on charge-modified peptide-TLR-7/8a conjugates that are chemically programmed to self-assemble into nanoparticles of uniform size (~20 nm) irrespective of the peptide antigen composition. This approach provided precise loading of diverse peptide neoantigens linked to TLR-7/8a (adjuvant) in nanoparticles, which increased uptake by and activation of antigen-presenting cells that promote T-cell immunity. Vaccination of mice with SNP-7/8a using predicted neoantigens (n = 179) from three tumor models induced CD8 T cells against ~50% of neoantigens with high predicted MHC-I binding affinity and led to enhanced tumor clearance. SNP-7/8a delivering in silico-designed mock neoantigens also induced CD8 T cells in nonhuman primates. Altogether, SNP-7/8a is a generalizable approach for codelivering peptide antigens and adjuvants in nanoparticles for inducing anticancer T-cell immunity.


Assuntos
Adjuvantes Imunológicos/química , Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/metabolismo , Vacinas Anticâncer/administração & dosagem , Melanoma Experimental/tratamento farmacológico , Animais , Vacinas Anticâncer/imunologia , Linhagem Celular Tumoral , Melanoma Experimental/imunologia , Camundongos , Nanopartículas , Medicina de Precisão , Primatas , Receptor 7 Toll-Like/imunologia , Receptor 8 Toll-Like/imunologia , Vacinação , Vacinas Conjugadas
8.
Sci Transl Med ; 11(520)2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31776286

RESUMO

Nearly all chronic human infections are associated with alterations in the memory B cell (MBC) compartment, including a large expansion of CD19hiT-bethi MBC in the peripheral blood of HIV-infected individuals with chronic viremia. Despite their prevalence, it is unclear how these B cells arise and whether they contribute to the inefficiency of antibody-mediated immunity in chronic infectious diseases. We addressed these questions by characterizing T-bet-expressing B cells in lymph nodes (LN) and identifying a strong T-bet signature among HIV-specific MBC associated with poor immunologic outcome. Confocal microscopy and quantitative imaging revealed that T-bethi B cells in LN of HIV-infected chronically viremic individuals distinctly accumulated outside germinal centers (GC), which are critical for optimal antibody responses. In single-cell analyses, LN T-bethi B cells of HIV-infected individuals were almost exclusively found among CD19hi MBC and expressed reduced GC-homing receptors. Furthermore, HIV-specific B cells of infected individuals were enriched among LN CD19hiT-bethi MBC and displayed a distinct transcriptome, with features similar to CD19hiT-bethi MBC in blood and LN GC B cells (GCBC). LN CD19hiT-bethi MBC were also related to GCBC by B cell receptor (BCR)-based phylogenetic linkage but had lower BCR mutation frequencies and reduced HIV-neutralizing capacity, consistent with diminished participation in GC-mediated affinity selection. Thus, in the setting of chronic immune activation associated with HIV viremia, failure of HIV-specific B cells to enter or remain in GC may help explain the rarity of high-affinity protective antibodies.


Assuntos
Afinidade de Anticorpos/imunologia , Linfócitos B/imunologia , Centro Germinativo/imunologia , Infecções por HIV/imunologia , Proteínas com Domínio T/metabolismo , Adulto , Anticorpos Neutralizantes/imunologia , Antígenos CD19/metabolismo , Citocinas/metabolismo , Feminino , Infecções por HIV/genética , Humanos , Memória Imunológica , Linfonodos/patologia , Masculino , Pessoa de Meia-Idade , Taxa de Mutação , Fenótipo , Receptores de Antígenos de Linfócitos B/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Transcriptoma/genética , Adulto Jovem
9.
J Exp Med ; 216(8): 1828-1842, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31196981

RESUMO

Mg2+ is required at micromolar concentrations as a cofactor for ATP, enzymatic reactions, and other biological processes. We show that decreased extracellular Mg2+ reduced intracellular Mg2+ levels and impaired the Ca2+ flux, activation marker up-regulation, and proliferation after T cell receptor (TCR) stimulation. Reduced Mg2+ specifically impairs TCR signal transduction by IL-2-inducible T cell kinase (ITK) due to a requirement for a regulatory Mg2+ in the catalytic pocket of ITK. We also show that altered catalytic efficiency by millimolar changes in free basal Mg2+ is an unrecognized but conserved feature of other serine/threonine and tyrosine kinases, suggesting a Mg2+ regulatory paradigm of kinase function. Finally, a reduced serum Mg2+ concentration in mice causes an impaired CD8+ T cell response to influenza A virus infection, reduces T cell activation, and exacerbates morbidity. Thus, Mg2+ directly regulates the active site of specific kinases during T cell responses, and maintaining a high serum Mg2+ concentration is important for antiviral immunity in otherwise healthy animals.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Magnésio/farmacologia , Infecções por Orthomyxoviridae/imunologia , Proteínas Tirosina Quinases/metabolismo , Animais , Biocatálise/efeitos dos fármacos , Doadores de Sangue , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/efeitos dos fármacos , Cálcio/metabolismo , Domínio Catalítico/efeitos dos fármacos , Células Cultivadas , Humanos , Ativação Linfocitária/efeitos dos fármacos , Magnésio/sangue , Magnésio/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/sangue , Infecções por Orthomyxoviridae/virologia , Concentração Osmolar , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/química , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia
10.
J Immunol ; 203(2): 476-484, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31142604

RESUMO

Eosinophils are present in muscle lesions associated with Duchenne muscular dystrophy and dystrophin-deficient mdx mice that phenocopy this disorder. Although it has been hypothesized that eosinophils promote characteristic inflammatory muscle damage, this has not been fully examined. In this study, we generated mice with the dystrophin mutation introduced into PHIL, a strain with a transgene that directs lineage-specific eosinophil ablation. We also explored the impact of eosinophil overabundance on dystrophinopathy by introducing the dystrophin mutation into IL-5 transgenic mice. We evaluated the degree of eosinophil infiltration in association with myofiber size distribution, centralized nuclei, serum creatine kinase, and quantitative histopathology scores. Among our findings, eosinophils were prominent in the quadriceps muscles of 4-wk-old male mdx mice but no profound differences were observed in the quantitative measures of muscle damage when comparing mdx versus mdx.PHIL versus mdx.IL5tg mice, despite dramatic differences in eosinophil infiltration (CD45+CD11c-Gr1-MHC class IIloSiglecF+ eosinophils at 1.2 ± 0.34% versus <0.1% versus 20 ± 7.6% of total cells, respectively). Further evaluation revealed elevated levels of eosinophil chemoatttractants eotaxin-1 and RANTES in the muscle tissue of all three dystrophin-deficient strains; eotaxin-1 concentration in muscle correlated inversely with age. Cytokines IL-4 and IL-1R antagonist were also detected in association with eosinophils in muscle. Taken together, our findings challenge the long-held perception of eosinophils as cytotoxic in dystrophin-deficient muscle; we show clearly that eosinophil infiltration is not a driving force behind acute muscle damage in the mdx mouse strain. Ongoing studies will focus on the functional properties of eosinophils in this unique microenvironment.


Assuntos
Eosinófilos/imunologia , Distrofia Muscular de Duchenne/imunologia , Animais , Modelos Animais de Doenças , Distrofina/imunologia , Feminino , Interleucina-4/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Músculo Esquelético/imunologia , Receptores de Interleucina-1/imunologia
11.
JCI Insight ; 4(6)2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30895942

RESUMO

The heterogeneity of individual cells in a tissue has been well characterized, largely using ex vivo approaches that do not permit longitudinal assessments of the same tissue over long periods of time. We demonstrate a potentially novel application of adaptive optics fluorescence microscopy to visualize and track the in situ mosaicism of retinal pigment epithelial (RPE) cells directly in the human eye. After a short, dynamic period during which RPE cells take up i.v.-administered indocyanine green (ICG) dye, we observed a remarkably stable heterogeneity in the fluorescent pattern that gradually disappeared over a period of days. This pattern could be robustly reproduced with a new injection and follow-up imaging in the same eye out to at least 12 months, which enabled longitudinal tracking of RPE cells. Investigation of ICG uptake in primary human RPE cells and in a mouse model of ICG uptake alongside human imaging corroborated our findings that the observed mosaicism is an intrinsic property of the RPE tissue. We demonstrate a potentially novel application of fluorescence microscopy to detect subclinical changes to the RPE, a technical advance that has direct implications for improving our understanding of diseases such as oculocutaneous albinism, late-onset retinal degeneration, and Bietti crystalline dystrophy.


Assuntos
Microscopia de Fluorescência/métodos , Mosaicismo , Neuroimagem/métodos , Oftalmologia/métodos , Epitélio Pigmentado da Retina/diagnóstico por imagem , Epitélio Pigmentado da Retina/patologia , Animais , Feminino , Doenças Genéticas Inatas/diagnóstico por imagem , Doenças Genéticas Inatas/patologia , Humanos , Verde de Indocianina , Camundongos , Camundongos Endogâmicos BALB C
12.
J Immunol ; 201(11): 3294-3306, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30373851

RESUMO

Activation of CD4+ T cells to proliferate drives cells toward aerobic glycolysis for energy production while using mitochondria primarily for macromolecular synthesis. In addition, the mitochondria of activated T cells increase production of reactive oxygen species, providing an important second messenger for intracellular signaling pathways. To better understand the critical changes in mitochondria that accompany prolonged T cell activation, we carried out an extensive analysis of mitochondrial remodeling using a combination of conventional strategies and a novel high-resolution imaging method. We show that for 4 d following activation, mouse CD4+ T cells sustained their commitment to glycolysis facilitated by increased glucose uptake through increased expression of GLUT transporters. Despite their limited contribution to energy production, mitochondria were active and showed increased reactive oxygen species production. Moreover, prolonged activation of CD4+ T cells led to increases in mitochondrial content and volume, in the number of mitochondria per cell and in mitochondrial biogenesis. Thus, during prolonged activation, CD4+ T cells continue to obtain energy predominantly from glycolysis but also undergo extensive mitochondrial remodeling, resulting in increased mitochondrial activity.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Mitocôndrias/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo , Animais , Células Cultivadas , Metabolismo Energético , Feminino , Glicólise , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transdução de Sinais
13.
J Dev Biol ; 5(4)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29214147

RESUMO

The Hedgehog (Hh) signaling pathway plays an essential role in the growth, development, and homeostatis of many tissues in vertebrates and invertebrates. Much of what is known about Hh signaling is in the context of embryonic development and tumor formation. However, a growing body of evidence is emerging indicating that Hh signaling is also involved in postnatal processes such as tissue repair and adult immune responses. To that extent, Hh signaling has also been shown to be a target for some pathogens that presumably utilize the pathway to control the local infected environment. In this review, we discuss what is currently known regarding pathogenic interactions with Hh signaling and speculate on the reasons for this pathway being a target. We also hope to shed light on the possibility of using small molecule modulators of Hh signaling as effective therapies for a wider range of human diseases beyond their current use in a limited number of cancers.

14.
PLoS Pathog ; 13(8): e1006588, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28837667

RESUMO

The multifunctional NS1 protein of influenza A viruses suppresses host cellular defense mechanisms and subverts other cellular functions. We report here on a new role for NS1 in modifying cell-cell signaling via the Hedgehog (Hh) pathway. Genetic epistasis experiments and FRET-FLIM assays in Drosophila suggest that NS1 interacts directly with the transcriptional mediator, Ci/Gli1. We further confirmed that Hh target genes are activated cell-autonomously in transfected human lung epithelial cells expressing NS1, and in infected mouse lungs. We identified a point mutation in NS1, A122V, that modulates this activity in a context-dependent fashion. When the A122V mutation was incorporated into a mouse-adapted influenza A virus, it cell-autonomously enhanced expression of some Hh targets in the mouse lung, including IL6, and hastened lethality. These results indicate that, in addition to its multiple intracellular functions, NS1 also modifies a highly conserved signaling pathway, at least in part via cell autonomous activities. We discuss how this new Hh modulating function of NS1 may influence host lethality, possibly through controlling cytokine production, and how these new insights provide potential strategies for combating infection.


Assuntos
Proteínas Hedgehog/metabolismo , Infecções por Orthomyxoviridae/metabolismo , Transdução de Sinais/fisiologia , Proteínas não Estruturais Virais/metabolismo , Animais , Drosophila , Humanos , Imuno-Histoquímica , Virus da Influenza A Subtipo H5N1/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
15.
J Immunol ; 198(10): 3835-3845, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28363906

RESUMO

CD8+ T cell immunosurveillance is based on recognizing oligopeptides presented by MHC class I molecules. Despite decades of study, the importance of protein ubiquitylation to peptide generation remains uncertain. In this study, we examined the ability of MLN7243, a recently described ubiquitin-activating enzyme E1 inhibitor, to block overall cytosolic peptide generation and generation of specific peptides from vaccinia- and influenza A virus-encoded proteins. We show that MLN7243 rapidly inhibits ubiquitylation in a variety of cell lines and can profoundly reduce the generation of cytosolic peptides. Kinetic analysis of specific peptide generation reveals that ubiquitylation of defective ribosomal products is rate limiting in generating class I peptide complexes. More generally, our findings demonstrate that the requirement for ubiquitylation in MHC class I-restricted Ag processing varies with class I allomorph, cell type, source protein, and peptide context. Thus, ubiquitin-dependent and -independent pathways robustly contribute to MHC class I-based immunosurveillance.


Assuntos
Apresentação de Antígeno , Antígenos de Histocompatibilidade Classe I/imunologia , Nucleosídeos/farmacologia , Peptídeos/imunologia , Sulfonamidas/farmacologia , Linfócitos T/imunologia , Animais , Linhagem Celular , Citosol/química , Citosol/imunologia , Inibidores Enzimáticos/farmacologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Vírus da Influenza A/química , Vírus da Influenza A/imunologia , Cinética , Ligantes , Camundongos , Monitorização Imunológica , Peptídeos/metabolismo , Pirazóis , Pirimidinas , Sulfetos , Ubiquitinação , Vaccinia virus/química , Vaccinia virus/imunologia
16.
Infect Immun ; 85(6)2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28320834

RESUMO

Granulibacter bethesdensis is a Gram-negative bacterium that infects patients with chronic granulomatous disease (CGD), a primary immunodeficiency marked by a defect in NOX2, the phagocyte NADPH oxidase. Previous studies have shown that NOX2 is essential for killing of G. bethesdensis by neutrophils and monocytes and that the bacteriostatic activity of monocyte-derived macrophages (MDM) requires NOX2 and gamma interferon (IFN-γ) pretreatment. To determine whether G. bethesdensis evades phagolysosomal killing, a host defense pathway intact in both normal and CGD MDM, or whether it occupies a distinct intracellular niche in CGD MDM, we assessed the trafficking patterns of this organism. We observed colocalization of G. bethesdensis with an early endosome antigen 1 (EEA1)-positive compartment, followed by colocalization with lysosome-associated membrane protein 1 (LAMP1)-positive and LysoTracker-positive late phagosomes; these characteristics were similar in both normal and CGD MDM. Despite localization to acidified late phagosomes, viable G. bethesdensis cells were recovered from viable MDM in numbers greater than in the initial input up to 6 days after infection. G. bethesdensis remains, and in some cases appears to divide, within a membrane-bound compartment for the entire 6-day time course. These findings indicate that this organism resists both oxygen-dependent and oxygen-independent phagolysosomal antimicrobial systems of human macrophages.


Assuntos
Acetobacteraceae/patogenicidade , Infecções por Bactérias Gram-Negativas/microbiologia , Doença Granulomatosa Crônica/microbiologia , Macrófagos/microbiologia , Doença Granulomatosa Crônica/complicações , Humanos , Interferon gama/imunologia , Proteínas de Membrana Lisossomal/metabolismo , Macrófagos/ultraestrutura , Glicoproteínas de Membrana/metabolismo , Microscopia Eletrônica de Transmissão , Monócitos/microbiologia , NADPH Oxidase 2 , NADPH Oxidases/metabolismo , Neutrófilos/microbiologia , Fagocitose , Fagossomos/imunologia , Fagossomos/microbiologia , Proteínas de Transporte Vesicular/metabolismo
17.
Nat Biotechnol ; 33(11): 1201-10, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26501954

RESUMO

The efficacy of vaccine adjuvants such as Toll-like receptor agonists (TLRa) can be improved through formulation and delivery approaches. Here, we attached small molecule TLR-7/8a to polymer scaffolds (polymer-TLR-7/8a) and evaluated how different physicochemical properties of the TLR-7/8a and polymer carrier influenced the location, magnitude and duration of innate immune activation in vivo. Particle formation by polymer-TLR-7/8a was the most important factor for restricting adjuvant distribution and prolonging activity in draining lymph nodes. The improved pharmacokinetic profile by particulate polymer-TLR-7/8a was also associated with reduced morbidity and enhanced vaccine immunogenicity for inducing antibodies and T cell immunity. We extended these findings to the development of a modular approach in which protein antigens are site-specifically linked to temperature-responsive polymer-TLR-7/8a adjuvants that self-assemble into immunogenic particles at physiologic temperatures in vivo. Our findings provide a chemical and structural basis for optimizing adjuvant design to elicit broad-based antibody and T cell responses with protein antigens.


Assuntos
Adjuvantes Imunológicos/química , Receptores Toll-Like/agonistas , Vacinas/imunologia , Animais , Portadores de Fármacos/química , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T/imunologia
18.
PLoS Pathog ; 10(6): e1004200, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24945527

RESUMO

Microsporidia comprise a phylum of over 1400 species of obligate intracellular pathogens that can infect almost all animals, but little is known about the host response to these parasites. Here we use the whole-animal host C. elegans to show an in vivo role for ubiquitin-mediated response to the microsporidian species Nematocida parisii, as well to the Orsay virus, another natural intracellular pathogen of C. elegans. We analyze gene expression of C. elegans in response to N. parisii, and find that it is similar to response to viral infection. Notably, we find an upregulation of SCF ubiquitin ligase components, such as the cullin ortholog cul-6, which we show is important for ubiquitin targeting of N. parisii cells in the intestine. We show that ubiquitylation components, the proteasome, and the autophagy pathway are all important for defense against N. parisii infection. We also find that SCF ligase components like cul-6 promote defense against viral infection, where they have a more robust role than against N. parisii infection. This difference may be due to suppression of the host ubiquitylation system by N. parisii: when N. parisii is crippled by anti-microsporidia drugs, the host can more effectively target pathogen cells for ubiquitylation. Intriguingly, inhibition of the ubiquitin-proteasome system (UPS) increases expression of infection-upregulated SCF ligase components, indicating that a trigger for transcriptional response to intracellular infection by N. parisii and virus may be perturbation of the UPS. Altogether, our results demonstrate an in vivo role for ubiquitin-mediated defense against microsporidian and viral infections in C. elegans.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/parasitologia , Caenorhabditis elegans/virologia , Proteínas Culina/imunologia , Microsporídios/patogenicidade , Proteínas Ligases SKP Culina F-Box/genética , Ubiquitinação/genética , Animais , Autofagia/genética , Autofagia/imunologia , Sequência de Bases , Caenorhabditis elegans/imunologia , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Proteínas de Caenorhabditis elegans/biossíntese , Proteínas de Caenorhabditis elegans/imunologia , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Culina/biossíntese , Interações Hospedeiro-Patógeno , Microsporídios/imunologia , Interferência de RNA , RNA Interferente Pequeno , Proteínas Ligases SKP Culina F-Box/antagonistas & inibidores , Proteínas Ligases SKP Culina F-Box/metabolismo , Análise de Sequência de RNA , Transcrição Gênica/genética , Ubiquitina/metabolismo
19.
Proc Natl Acad Sci U S A ; 111(22): 8215-20, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24843160

RESUMO

Pathogen exit is a key stage in the spread and propagation of infectious disease, with the fecal-oral route being a common mode of disease transmission. However, it is poorly understood which molecular pathways provide the major modes for intracellular pathogen exit and fecal-oral transmission in vivo. Here, we use the transparent nematode Caenorhabditis elegans to investigate intestinal cell exit and fecal-oral transmission by the natural intracellular pathogen Nematocida parisii, which is a recently identified species of microsporidia. We show that N. parisii exits from polarized host intestinal cells by co-opting the host vesicle trafficking system and escaping into the lumen. Using a genetic screen, we identified components of the host endocytic recycling pathway that are required for N. parisii spore exit via exocytosis. In particular, we show that the small GTPase RAB-11 localizes to apical spores, is required for spore-containing compartments to fuse with the apical plasma membrane, and is required for spore exit. In addition, we find that RAB-11-deficient animals exhibit impaired contagiousness, supporting an in vivo role for this host trafficking factor in microsporidia disease transmission. Altogether, these findings provide an in vivo example of the major mode of exit used by a natural pathogen for disease spread via fecal-oral transmission.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/microbiologia , Exocitose/fisiologia , Microsporídios/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Caenorhabditis elegans/citologia , Compartimento Celular/fisiologia , Membrana Celular/metabolismo , Membrana Celular/microbiologia , Membrana Celular/ultraestrutura , Polaridade Celular/fisiologia , Trato Gastrointestinal/citologia , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Humanos , Fusão de Membrana/fisiologia , Microscopia Eletrônica de Transmissão , Microsporídios/crescimento & desenvolvimento , Microsporídios/ultraestrutura , Esporos Fúngicos/metabolismo
20.
Cell Host Microbe ; 11(4): 375-86, 2012 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-22520465

RESUMO

Pathogens commonly disrupt host cell processes or cause damage, but the surveillance mechanisms used by animals to monitor these attacks are poorly understood. Upon infection with pathogenic Pseudomonas aeruginosa, the nematode C. elegans upregulates infection response gene irg-1 using the zip-2 bZIP transcription factor. Here we show that P. aeruginosa infection inhibits mRNA translation in the intestine via the endocytosed translation inhibitor Exotoxin A, which leads to an increase in ZIP-2 protein levels. In the absence of infection we find that the zip-2/irg-1 pathway is upregulated following disruption of several core host processes, including inhibition of mRNA translation. ZIP-2 induction is conferred by a conserved upstream open reading frame in zip-2 that could derepress ZIP-2 translation upon infection. Thus, translational inhibition, a common pathogenic strategy, can trigger activation of an immune surveillance pathway to provide host defense.


Assuntos
Caenorhabditis elegans/imunologia , Interações Hospedeiro-Patógeno , Biossíntese de Proteínas , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/imunologia , ADP Ribose Transferases/genética , ADP Ribose Transferases/imunologia , Animais , Toxinas Bacterianas/genética , Toxinas Bacterianas/imunologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/microbiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/imunologia , Regulação para Baixo , Exotoxinas/genética , Exotoxinas/imunologia , Humanos , Imunidade Inata , Infecções por Pseudomonas/genética , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/fisiologia , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia , Fatores de Virulência/genética , Fatores de Virulência/imunologia , Exotoxina A de Pseudomonas aeruginosa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...