Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Transl Myol ; 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38305708

RESUMO

During the 2023 Padua Days on Muscle and Mobility Medicine the 2024 meeting was scheduled from 28 February to 2 March 2024 (2024Pdm3). During autumn 2023 the program was expanded with Scientific Sessions which will take place over five days (in 2024 this includes February 29), starting from the afternoon of 27 February 2024 in the Conference Rooms of the Hotel Petrarca, Thermae of Euganean Hills (Padua), Italy. As per consolidated tradition, the second day will take place in Padua, for the occasion in the Sala San Luca of the Monastery of Santa Giustina in Prato della Valle, Padua, Italy. Confirming the attractiveness of the Padua Days on Muscle and Mobility Medicine, over 100 titles were accepted until 15 December 2023 (many more than expected), forcing the organization of parallel sessions on both 1 and 2 March 2024. The five days will include lectures and oral presentations of scientists and clinicians from Argentina, Austria, Belgium, Brazil, Bulgaria, Canada, Denmark, Egypt, France, Germany, Iceland, Ireland, Italy, Romania, Russia, Slovenia, Switzerland, UK and USA. Only Australia, China, India and Japan are missing from this edition. But we are confident that authors from those countries who publish articles in the PAGEpress: European Journal of Translational Myology (EJTM: 2022 ESCI Clarivate's Impact Factor: 2.2; SCOPUS Cite Score: 3.2) will decide to join us in the coming years. Together with the program established by 31 January 2024, the abstracts will circulate during the meeting only in the electronic version of the EJTM Issue 34 (1) 2024. See you soon in person at the Hotel Petrarca in Montegrotto Terme, Padua, for the inauguration scheduled the afternoon of 27 February 2024 or on-line for free via Zoom. Send us your email address if you are not traditional participants listed in Pdm3 and EJTM address books.

2.
Eur J Transl Myol ; 33(4)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38112609

RESUMO

At the end of the 2023 Padua Days of Muscle and Mobility Medicine the next year's meeting was scheduled from 27 February to 2 March 2024 (2024Pdm3). During the summer and autumn the program was confirmed with Scientific Sessions that will take place over five days, starting in the afternoon of February 27, 2024 at the Conference Room of the Hotel Petrarca, Thermae of Euganean Hills (Padua), Italy. As usual, the next day will be spent in Padua, in this occasion at the San Luca Hall of the Santa Giustina monastery in Prato della Valle, Padua, Italy. Collected during Autumn 2023, many more titles and abstracts than expected were submitted, forcing the organization of parallel sessions both on March 1 and March 2 2024 confirming attractiveness of the 2024 Pdm3. The five days will include oral presentations of scientists and clinicians from Argentina, Austria, Belgium, Brazil, Canada, Denmark, Egypt, France, Germany, Iceland, Ireland, Italy, Romania, Russia, Slovenia, Switzerland, UK and USA. Together with the preliminary Program at December 1, 2023, the early submitted Abstracts is e-published in this Issue 33 (4) 2023 of the European Journal of Translational Myology (EJTM). You are invited to join, submitting your Last Minute Abstracts to ugo.carraro@unipd.it by February 1, 2024. Furthermore, with the more generous deadline of May 20, 2024, submit please "Communications" to the European Journal of Translational Myology (Clarivate's ESCI Impact factor 2.2; SCOPUS Cite Score: 3.2). See you soon at the Hotel Petrarca in Montegrotto Terme, Padua, on February 27, 2024, but the complete program can be followed from home via zoom connection.

3.
Front Immunol ; 14: 1202834, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37920473

RESUMO

Growing evidence demonstrates a continuous interaction between the immune system, the nerve and the muscle in neuromuscular disorders of different pathogenetic origins, such as Duchenne Muscular Dystrophy (DMD) and Amyotrophic Lateral Sclerosis (ALS), the focus of this review. Herein we highlight the complexity of the cellular and molecular interactions involving the immune system in neuromuscular disorders, as exemplified by DMD and ALS. We describe the distinct types of cell-mediated interactions, such as cytokine/chemokine production as well as cell-matrix and cell-cell interactions between T lymphocytes and other immune cells, which target cells of the muscular or nervous tissues. Most of these interactions occur independently of exogenous pathogens, through ligand-receptor binding and subsequent signal transduction cascades, at distinct levels of specificity. Although this issue reveals the complexity of the system, it can also be envisioned as a window of opportunity to design therapeutic strategies (including synthetic moieties, cell and gene therapy, as well as immunotherapy) by acting upon one or more targets. In this respect, we discuss ongoing clinical trials using VLA-4 inhibition in DMD, and in ALS, with a focus on regulatory T cells, both revealing promising results.


Assuntos
Esclerose Lateral Amiotrófica , Distrofia Muscular de Duchenne , Doenças Neuromusculares , Humanos , Distrofia Muscular de Duchenne/terapia , Esclerose Lateral Amiotrófica/terapia , Esclerose Lateral Amiotrófica/genética , Músculos , Terapia Genética/métodos
4.
Front Neurol ; 14: 1226969, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38020652

RESUMO

Spinal muscular atrophy (SMA) is a lower motor neuron disease due to biallelic mutations in the SMN1 gene on chromosome 5. It is characterized by progressive muscle weakness of limbs, bulbar and respiratory muscles. The disease is usually classified in four different phenotypes (1-4) according to age at symptoms onset and maximal motor milestones achieved. Recently, three disease modifying treatments have received approval from the Food and Drug Administration (FDA) and the European Medicines Agency (EMA), while several other innovative drugs are under study. New therapies have been game changing, improving survival and life quality for SMA patients. However, they have also intensified the need for accurate biomarkers to monitor disease progression and treatment efficacy. While clinical and neurophysiological biomarkers are well established and helpful in describing disease progression, there is a great need to develop more robust and sensitive circulating biomarkers, such as proteins, nucleic acids, and other small molecules. Used alone or in combination with clinical biomarkers, they will play a critical role in enhancing patients' stratification for clinical trials and access to approved treatments, as well as in tracking response to therapy, paving the way to the development of individualized therapeutic approaches. In this comprehensive review, we describe the foremost circulating biomarkers of current significance, analyzing existing literature on non-treated and treated patients with a special focus on neurofilaments and circulating miRNA, aiming to identify and examine their role in the follow-up of patients treated with innovative treatments, including gene therapy.

5.
Curr Osteoporos Rep ; 21(5): 624-631, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37421571

RESUMO

PURPOSE OF REVIEW: This review aims to summarize (i) the latest evidence on cranial neural crest cells (CNCC) contribution to craniofacial development and ossification; (ii) the recent discoveries on the mechanisms responsible for their plasticity; and (iii) the newest procedures to ameliorate maxillofacial tissue repair. RECENT FINDINGS: CNCC display a remarkable differentiation potential that exceeds the capacity of their germ layer of origin. The mechanisms by which they expand their plasticity was recently described. Their ability to participate to craniofacial bone development and regeneration open new perspectives for treatments of traumatic craniofacial injuries or congenital syndromes. These conditions can be life-threatening, require invasive maxillofacial surgery and can leave deep sequels on our health or quality of life. With accumulating evidence showing how CNCC-derived stem cells potential can ameliorate craniofacial reconstruction and tissue repair, we believe a deeper understanding of the mechanisms regulating CNCC plasticity is essential to ameliorate endogenous regeneration and improve tissue repair therapies.


Assuntos
Crista Neural , Qualidade de Vida , Humanos , Diferenciação Celular/fisiologia , Osteogênese
6.
Eur J Transl Myol ; 32(2)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35421919

RESUMO

Despite COVID-19 outbreak, the program of the 2022 Padua Days of Muscle and Mobility Medicine (PDM3) was confirmed On-site in February from March 30 to April 2, 2022 to be held at the University of Padua Aula Magna and at Conference Hall of the Hotel Petrarca of Thermae of Euganean Hills (Padua), Italy. Over 130 abstracts, including the last-minute submissions listed below, convinced organizers to extend the program to five days. The sponsorship of the University of Florida and the willingness of attendees to meet friends after two years of virtual conferences were the keys of success, despite concerns for current events in East Europe. Only fourteen Virtual presentations were in the final program, eight due to last-minute Coronavirus infections and six for East Europe problems. The first two days of the programincluded scientists and clinicians of the University of Florida, USA and their invitees from Canada, France, Italy, Swiden, Swiss, UK and USA. Researchers and clinicians from Austria, Belgium, France, Germany, Iceland, Ireland, Italy, Russia, Slovakia, Slovenia, UK and USA filled the program of last three days more oriented to aging and rehabilitation. The large majority of abstracts was e-published before the meeting; here are last-minute abstracts and the final program. The program of the 2023 On-site PDM3 was informally designed during the Meeting, but will be circulated during 2022 summer. Fix the dates in your agenda from Thursday March 28 to Friday March 31. For now, please, submit Communications to the European Journal of Translational Myology, PAGEpress, Pavia, Italy and Original Articles or Reviews to the Journal Diagnostics, MDPI, Basel, Swiss. Both journals will host Special PDM3 Sections and will apply 50% discount on editorial processing fees to the first 15 accepted typescripts.

7.
Nat Biomed Eng ; 5(12): 1472-1484, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33707778

RESUMO

Changes in the composition and viscoelasticity of the extracellular matrix in load-bearing cartilage influence the proliferation and phenotypes of chondrocytes, and are associated with osteoarthritis. However, the underlying molecular mechanism is unknown. Here we show that the viscoelasticity of alginate hydrogels regulates cellular volume in healthy human chondrocytes (with faster stress relaxation allowing cell expansion and slower stress relaxation restricting it) but not in osteoarthritic chondrocytes. Cellular volume regulation in healthy chondrocytes was associated with changes in anabolic gene expression, in the secretion of multiple pro-inflammatory cytokines, and in the modulation of intracellular calcium regulated by the ion-channel protein transient receptor potential cation channel subfamily V member 4 (TRPV4), which controls the phosphorylation of glycogen synthase kinase 3ß (GSK3ß), an enzyme with pleiotropic effects in osteoarthritis. A dysfunctional TRPV4-GSK3ß pathway in osteoarthritic chondrocytes rendered the cells unable to respond to environmental changes in viscoelasticity. Our findings suggest strategies for restoring chondrocyte homeostasis in osteoarthritis.


Assuntos
Condrócitos , Canais de Cátion TRPV , Células Cultivadas , Matriz Extracelular , Glicogênio Sintase Quinase 3 beta , Humanos
8.
JBMR Plus ; 4(8): e10383, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33134768

RESUMO

Skeletal development is a tightly orchestrated process in which cartilage and bone differentiation are intricately intertwined. Recent studies have highlighted the contribution of epigenetic modifications and their writers to skeletal development. Methylated cytosine (5mC) can be oxidized to 5-hydroxymethylcytosine (5hmC) by the Ten-eleven-translocation (TET) enzymes leading to demethylation. We have previously demonstrated that 5hmC is stably accumulated on lineage-specific genes that are activated during in vitro chondrogenesis in the ATDC5 chondroprogenitors. Knockdown (KD) of Tet1 via short-hairpin RNAs blocked ATDC5 chondrogenic differentiation. Here, we aimed to provide the mechanistic basis for TET1 function during ATDC5 differentiation. Transcriptomic analysis of Tet1 KD cells demonstrated that 54% of downregulated genes were SOX9 targets, suggesting a role for TET1 in mediating activation of a subset of the SOX9 target genes. Using genome-wide mapping of 5hmC during ATDC5 differentiation, we found that 5hmC is preferentially accumulated at chondrocyte-specific class II binding sites for SOX9, as compared with the tissue-agnostic class I sites. Specifically, we find that SOX9 is unable to bind to Col2a1 and Acan after Tet1 KD, despite no changes in SOX9 levels. Finally, we compared this KD scenario with the genetic loss of TET1 in the growth plate using Tet1 -/- embryos, which are approximately 10% smaller than their WT counterparts. In E17.5 Tet1 -/- embryos, loss of SOX9 target gene expression is more modest than upon Tet1 KD in vitro. Overall, our data suggest a role for TET1-mediated 5hmC deposition in partly shaping an epigenome conducive for SOX9 function. © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.

9.
J Pers Med ; 10(3)2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32751151

RESUMO

Spinal muscular atrophy (SMA) is currently classified into five different subtypes, from the most severe (type 0) to the mildest (type 4) depending on age at onset, best motor function achieved, and copy number of the SMN2 gene. The two recent approved treatments for SMA patients revolutionized their life quality and perspectives. However, upon treatment with Nusinersen, the most widely administered therapy up to date, a high degree of variability in therapeutic response was observed in adult SMA patients. These data, together with the lack of natural history information and the wide spectrum of disease phenotypes, suggest that further efforts are needed to develop precision medicine approaches for all SMA patients. Here, we compile the current methods for functional evaluation of adult SMA patients treated with Nusinersen. We also present an overview of the known molecular changes underpinning disease heterogeneity. We finally highlight the need for novel techniques, i.e., -omics approaches, to capture phenotypic differences and to understand the biological signature in order to revise the disease classification and device personalized treatments.

10.
Mol Ther ; 28(8): 1887-1901, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32470325

RESUMO

Spinal muscular atrophy (SMA) is a neuromuscular disease mainly caused by mutations or deletions in the survival of motor neuron 1 (SMN1) gene and characterized by the degeneration of motor neurons and progressive muscle weakness. A viable therapeutic approach for SMA patients is a gene replacement strategy that restores functional SMN expression using adeno-associated virus serotype 9 (AAV9) vectors. Currently, systemic or intra-cerebrospinal fluid (CSF) delivery of AAV9-SMN is being explored in clinical trials. In this study, we show that the postnatal delivery of an AAV9 that expresses SMN under the control of the neuron-specific promoter synapsin selectively targets neurons without inducing re-expression in the peripheral organs of SMA mice. However, this approach is less efficient in restoring the survival and neuromuscular functions of SMA mice than the systemic or intra-CSF delivery of an AAV9 in which SMN is placed under the control of a ubiquitous promoter. This study suggests that further efforts are needed to understand the extent to which SMN is required in neurons and peripheral organs for a successful therapeutic effect.


Assuntos
Dependovirus/genética , Vetores Genéticos/genética , Neurônios Motores/metabolismo , Neurônios Motores/virologia , Atrofia Muscular Espinal/genética , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Animais , Modelos Animais de Doenças , Expressão Gênica , Técnicas de Transferência de Genes , Terapia Genética , Locomoção , Camundongos , Atrofia Muscular Espinal/tratamento farmacológico , Fenótipo , Prognóstico , Regiões Promotoras Genéticas , Medula Espinal/metabolismo , Medula Espinal/patologia , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Transdução Genética , Resultado do Tratamento
11.
Sci Transl Med ; 12(539)2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32295898

RESUMO

Osteoarthritis (OA) is a degenerative disease of the joint, which results in pain, loss of mobility, and, eventually, joint replacement. Currently, no disease-modifying drugs exist, partly because of the multiple levels at which cartilage homeostasis is disrupted. Recent studies have highlighted the importance of epigenetic dysregulation in OA, sparking interest in the epigenetic modulation for this disease. In our previous work, we characterized a fivefold increase in cytosine hydroxymethylation (5hmC), an oxidized derivative of cytosine methylation (5mC) associated with gene activation, accumulating at OA-associated genes. To test the role of 5hmC in OA, here, we used a mouse model of surgically induced OA and found that OA onset was accompanied by a gain of ~40,000 differentially hydroxymethylated sites before the notable histological appearance of disease. We demonstrated that ten-eleven-translocation enzyme 1 (TET1) mediates the 5hmC deposition because 98% of sites enriched for 5hmC in OA were lost in Tet1-/- mice. Loss of TET1-mediated 5hmC protected the Tet1-/- mice from OA development, including degeneration of the cartilage surface and osteophyte formation, by directly preventing the activation of multiple OA pathways. Loss of TET1 in human OA chondrocytes reduced the expression of the matrix metalloproteinases MMP3 and MMP13 and multiple inflammatory cytokines. Intra-articular injections of a dioxygenases inhibitor, 2-hydroxyglutarate, on mice after surgical induction of OA stalled disease progression. Treatment of human OA chondrocytes with the same inhibitor also phenocopied TET1 loss. Collectively, these data demonstrate that TET1-mediated 5hmC deposition regulates multiple OA pathways and can be modulated for therapeutic intervention.


Assuntos
Proteínas de Ligação a DNA , Oxigenases de Função Mista , Osteoartrite , Preparações Farmacêuticas , Proteínas Proto-Oncogênicas , 5-Metilcitosina , Animais , Proteínas de Ligação a DNA/genética , Camundongos , Osteoartrite/genética , Proteínas Proto-Oncogênicas/genética
12.
Sci Adv ; 6(11): eaay5352, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32201724

RESUMO

Aging or injury leads to degradation of the cartilage matrix and the development of osteoarthritis (OA). Because of a paucity of single-cell studies of OA cartilage, little is known about the interpatient variability in its cellular composition and, more importantly, about the cell subpopulations that drive the disease. Here, we profiled healthy and OA cartilage samples using mass cytometry to establish a single-cell atlas, revealing distinct chondrocyte progenitor and inflammation-modulating subpopulations. These rare populations include an inflammation-amplifying (Inf-A) population, marked by interleukin-1 receptor 1 and tumor necrosis factor receptor II, whose inhibition decreased inflammation, and an inflammation-dampening (Inf-D) population, marked by CD24, which is resistant to inflammation. We devised a pharmacological strategy targeting Inf-A and Inf-D cells that significantly decreased inflammation in OA chondrocytes. Using our atlas, we stratified patients with OA in three groups that are distinguished by the relative proportions of inflammatory to regenerative cells, making it possible to devise precision therapeutic approaches.


Assuntos
Cartilagem/metabolismo , Cartilagem/patologia , Citometria de Fluxo , Osteoartrite/metabolismo , Osteoartrite/patologia , Transdução de Sinais , Análise de Célula Única , Biomarcadores , Antígeno CD24/metabolismo , Condrócitos/metabolismo , Citometria de Fluxo/métodos , Humanos , Osteoartrite/etiologia , Análise de Célula Única/métodos
13.
Neuroscience ; 408: 68-80, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30928339

RESUMO

Thrombospondins (TSPs) are cell adhesion molecules that play an important role in the maintenance of hearing and afferent synaptic connections. Based on their reported function in restoring synaptic connections after stroke, we tested a potential role for TSP1 and TSP2 genes in repairing cochlear synapses following noise injury. We observed a tonotopic gradient in the expression of TSP1 and TSP2 mRNA in control mouse cochleae and an upregulation of these genes following noise exposure. Examining the functional sequelae of these changes revealed that afferent synaptic counts and auditory brainstem responses (ABRs) in noise-exposed TSP1 and TSP2 knockout (-/-) mice exhibited a worst recovery when compared to controls. Consistent with their tonotopic expression, TSP1-/- mice showed greater susceptibility to noise-induced hearing loss (NIHL) at 8 kHz and 16 kHz frequencies, whereas NIHL in TSP2-/- mice occurred only at mid and high frequencies. Further analysis of the ABR waveforms indicated peripheral neuronal damage in TSP2-/- but not in TSP1-/- mice. Noise trauma affecting mid to high frequencies triggered severe seizures in the TSP2-/- mice. We found that decreased susceptibility to audiogenic seizures in TSP1-/- mice was correlated with increased TSP2 protein levels in their inner ears, suggesting that TSP2 might functionally compensate for the loss of TSP1 in these mice. Our data indicate that TSP1 and TSP2 are both involved in susceptibility to NIHL, with TSP2 playing a more prominent role.


Assuntos
Limiar Auditivo/fisiologia , Cóclea/metabolismo , Perda Auditiva Provocada por Ruído/metabolismo , Trombospondina 1/metabolismo , Trombospondinas/metabolismo , Animais , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Regulação da Expressão Gênica , Perda Auditiva Provocada por Ruído/fisiopatologia , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Gânglio Espiral da Cóclea/metabolismo , Trombospondina 1/genética , Trombospondinas/genética
14.
J Orthop Res ; 37(5): 1018-1024, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30839118

RESUMO

Periprosthetic joint infections continues to be a common complication in total joint arthroplasty, resulting in significant morbidity, mortality, and additional cost. Trabecular metal implants with an internal cemented interface may be customizable drug delivery devices with an ingrowth interface. Thirty-six acetabular implants were assembled in vitro, half with a trabecular metal shell and half without. The antibiotic loaded bone cement was prepared via three different mixing techniques and at two different mixing times. Mixing time had a significant effect on the total amount of gentamicin eluted. The long mixing protocol eluted up to 126% (p = 0.001) more gentamicin than the short mixing protocol at 4 h and 192% (p < 0.001) more at 7 days. Hand or mechanical mixing technique had no significant effect on elution at 4 h. At 7 days, the mechanical mixing system under vacuum eluted over 50% (p = 0.031) more gentamicin than without a vacuum and nearly 60% (p = 0.040) more gentamicin than hand mixing. The use of a trabecular metal shell had no significant effect on the bulk elution of gentamicin at 4 h (p > 0.05) but significantly reduced total gentamicin elution under certain mixing protocols at 7 days. A possible optimization strategy to improve elution kinetics would be to use a long mixing time with a mechanical mixing system under vacuum. The establishment of trabecular metal as an effective delivery vehicle for antibiotics makes possible an entirely new class of drug eluting device designs. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.


Assuntos
Antibacterianos/administração & dosagem , Cimentos Ósseos/química , Gentamicinas/administração & dosagem , Polimetil Metacrilato/química , Infecções Relacionadas à Prótese/prevenção & controle , Antibacterianos/química , Gentamicinas/química , Humanos , Prótese Articular , Porosidade
15.
Stem Cell Res Ther ; 8(1): 244, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29096706

RESUMO

BACKGROUND: Induced pluripotent stem cells (iPSC) provide an unlimited patient-specific cell source for regenerative medicine. Adult cells have had limited success in cartilage repair, but juvenile chondrocytes (from donors younger than 13 years of age) have been identified to generate superior cartilage. With this perspective, the aim of these studies was to compare the human iPSC-derived chondrocytes (hiChondrocytes) to adult and juvenile chondrocytes and identify common molecular factors that govern their function. METHODS: Phenotypic and functional characteristics of hiChondrocytes were compared to juvenile and adult chondrocytes. Analyses of global gene expression profiling, independent gene expression, and loss-of-function studies were utilized to test molecular factors having a regulatory effect on hiChondrocytes and juvenile chondrocyte function. RESULTS: Here, we report that the iPSC-derived chondrocytes mimic juvenile chondrocytes in faster cell proliferation and resistance to IL-1ß compared to adult chondrocytes. Whole genome transcriptome analyses revealed unique ECM factors and immune response pathways to be enriched in both juvenile and iPSC-derived chondrocytes as compared to adult chondrocytes. Loss-of-function studies demonstrated that CD24, a cell surface receptor enriched in both juvenile chondrocytes and hiChondrocytes, is a regulatory factor in both faster proliferation and resistance to proinflammatory cues in these chondrocyte populations. CONCLUSIONS: Our studies identify that hiChondrocytes mimic juvenile chondrocytes for the dual advantage of faster proliferation and a reduced response to the inflammatory cytokine IL-1ß. While developmental immaturity of iPSC-derived cells can be a challenge for tissues like muscle and brain, our studies demonstrate that it is advantageous for a tissue like cartilage that has limited regenerative ability in adulthood.


Assuntos
Antígeno CD24/genética , Condrócitos/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Interleucina-1beta/farmacologia , Adulto , Fatores Etários , Antígeno CD24/imunologia , Cartilagem Articular/citologia , Cartilagem Articular/imunologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Condrócitos/citologia , Condrócitos/imunologia , Feminino , Feto , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/imunologia , Lactente , Interleucina-1beta/imunologia , Mimetismo Molecular , Anotação de Sequência Molecular , Regeneração/imunologia
16.
Bioeng Transl Med ; 2(3): 278-284, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-29313037

RESUMO

Bone Marrow-derived mesenchymal stem cells (BM-MSC) are an attractive source for cell-based therapies in cartilage injury owing to their efficient differentiation into chondrocytes and their immune-suppressive abilities. However, their clinical use is hampered by a scarcity of cells leading to compromised efficacy. While expansion of human MSC ex vivo can potentially overcome the scarcity of cells, current methods lead to a rapid loss of the stem cell properties. In this study, we report soluble Collagen VI (cartilage pericellular matrix component) as a potential biologic that can expand the MSC population while maintaining the stem cell phenotype as confirmed by expression of the stem cell markers CD105 and CD90. Short-term treatment with Collagen VI additionally retains the potential of MSC to differentiate into mature chondrocytes in pellet culture. Cartilage pellets generated from MSC treated with Collagen VI or control express comparable amounts of the chondrogenic markers Collagen II, Aggrecan and Sox9, and the extracellular glycosaminoglycans. Our observations confirm that the use of the endogenous and cartilage-specific factor Collagen VI is valuable for a rapid and efficient expansion of MSC for potential use in cartilage regeneration and osteoarthritis.

17.
Arthritis Res Ther ; 18(1): 292, 2016 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-27955675

RESUMO

BACKGROUND: Diseases associated with human cartilage, including rheumatoid arthritis (RA) and osteoarthritis (OA) have manifested age, mechanical stresses and inflammation as the leading risk factors. Although inflammatory processes are known to be upregulated upon aging, we sought to gain a molecular understanding of how aging affects the tissue-specific response to inflammation. In this report, we explored the role of cluster of differentiation 24 (CD24) in regulating differential inflammatory responses in juvenile and adult human chondrocytes. METHODS: Differential cell-surface CD24 expression was assessed in juvenile and adult chondrocytes along with human induced pluripotent stem cell (hiPSC)-derived neonatal chondrocytes through gene expression and fluorescence-activated cell sorting (FACS) analyses. Loss of function of CD24 was achieved through silencing in chondrocytes and the effects on the response to inflammatory cues were assessed through gene expression and NFκB activity. RESULTS: CD24 expression in chondrocytes caused a differential response to cytokine-induced inflammation, with the CD24high juvenile chondrocytes being resistant to IL-1ß treatment as compared to CD24low adult chondrocytes. CD24 protects from inflammatory response by reducing NFκB activation, as an acute loss of CD24 via silencing led to an increase in NFκB activation. Moreover, the loss of CD24 in chondrocytes subsequently increased inflammatory and catabolic gene expression both in the absence and presence of IL-1ß. CONCLUSIONS: We have identified CD24 as a novel regulator of inflammatory response in cartilage that is altered during development and aging and could potentially be therapeutic in RA and OA.


Assuntos
Envelhecimento/metabolismo , Antígeno CD24/metabolismo , Condrócitos/metabolismo , Adolescente , Adulto , Envelhecimento/imunologia , Antígeno CD24/imunologia , Cartilagem Articular/imunologia , Cartilagem Articular/metabolismo , Diferenciação Celular , Separação Celular , Criança , Pré-Escolar , Condrócitos/imunologia , Feminino , Feto , Citometria de Fluxo , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Lactente , Inflamação/imunologia , Inflamação/metabolismo , Masculino , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/imunologia , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma
18.
Tissue Eng Part A ; 22(7-8): 645-53, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26955889

RESUMO

Although regeneration of human cartilage is inherently inefficient, age is an important risk factor for osteoarthritis. Recent reports have provided compelling evidence that juvenile chondrocytes (from donors below 13 years of age) are more efficient at generating articular cartilage as compared to adult chondrocytes. However, the molecular basis for such a superior regenerative capability is not understood. To identify the cell-intrinsic differences between juvenile and adult cartilage, we have systematically profiled global gene expression changes between a small cohort of human neonatal/juvenile and adult chondrocytes. No such study is available for human chondrocytes although young and old bovine and equine cartilage have been recently profiled. Our studies have identified and validated new factors enriched in juvenile chondrocytes as compared to adult chondrocytes including secreted extracellular matrix factors chordin-like 1 (CHRDL1) and microfibrillar-associated protein 4 (MFAP4). Network analyses identified cartilage development pathways, epithelial-mesenchymal transition, and innate immunity pathways to be overrepresented in juvenile-enriched genes. Finally, CHRDL1 was observed to aid the proliferation and survival of bone marrow-derived human mesenchymal stem cells (hMSC) while maintaining their stem cell potential. These studies, therefore, provide a mechanism for how young cartilage factors can potentially enhance stem cell function in cartilage repair.


Assuntos
Proteínas de Transporte/metabolismo , Condrócitos/citologia , Proteínas da Matriz Extracelular/metabolismo , Proteínas do Olho/metabolismo , Glicoproteínas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco/citologia , Adolescente , Adulto , Envelhecimento , Proteínas de Transporte/genética , Proliferação de Células , Criança , Condrócitos/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas do Olho/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Glicoproteínas/genética , Humanos , Lactente , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Proteínas do Tecido Nervoso/genética , Reprodutibilidade dos Testes , Células-Tronco/metabolismo
19.
J Bone Miner Res ; 31(3): 524-34, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26363184

RESUMO

Regulation of gene expression changes during chondrogenic differentiation by DNA methylation and demethylation is little understood. Methylated cytosines (5mC) are oxidized by the ten-eleven-translocation (TET) proteins to 5-hydroxymethylcytosines (5hmC), 5-formylcytosines (5fC), and 5-carboxylcytosines (5caC), eventually leading to a replacement by unmethylated cytosines (C), ie, DNA demethylation. Additionally, 5hmC is stable and acts as an epigenetic mark by itself. Here, we report that global changes in 5hmC mark chondrogenic differentiation in vivo and in vitro. Tibia anlagen and growth plate analyses during limb development at mouse embryonic days E 11.5, 13.5, and 17.5 showed dynamic changes in 5hmC levels in the differentiating chondrocytes. A similar increase in 5hmC levels was observed in the ATDC5 chondroprogenitor cell line accompanied by increased expression of the TET proteins during in vitro differentiation. Loss of TET1 in ATDC5 decreased 5hmC levels and impaired differentiation, demonstrating a functional role for TET1-mediated 5hmC dynamics in chondrogenic differentiation. Global analyses of the 5hmC-enriched sequences during early and late chondrogenic differentiation identified 5hmC distribution to be enriched in the regulatory regions of genes preceding the transcription start site (TSS), as well as in the gene bodies. Stable gains in 5hmC were observed in specific subsets of genes, including genes associated with cartilage development and in chondrogenic lineage-specific genes. 5hmC gains in regulatory promoter and enhancer regions as well as in gene bodies were strongly associated with activated but not repressed genes, indicating a potential regulatory role for DNA hydroxymethylation in chondrogenic gene expression.


Assuntos
Diferenciação Celular/genética , Condrogênese/genética , Citosina/análogos & derivados , Ativação Transcricional/genética , 5-Metilcitosina/análogos & derivados , Animais , Cartilagem/embriologia , Condrócitos/citologia , Condrócitos/metabolismo , Citosina/metabolismo , DNA Intergênico/genética , Proteínas de Ligação a DNA/metabolismo , Desenvolvimento Embrionário/genética , Extremidades/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Proteínas Proto-Oncogênicas/metabolismo , Células-Tronco/citologia
20.
FASEB J ; 30(4): 1404-15, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26672000

RESUMO

Understanding the regulation of the stem cell fate is fundamental for designing novel regenerative medicine strategies. Previous studies have suggested that pharmacological treatments with small molecules provide a robust and reversible regulation of the stem cell program. Previously, we showed that treatment with a vanadium compound influences muscle cell fatein vitro In this study, we demonstrate that treatment with the phosphotyrosine phosphatase inhibitor bisperoxovanadium (BpV) drives primary muscle cells to a poised stem cell stage, with enhanced function in muscle regenerationin vivofollowing transplantation into injured muscles. Importantly, BpV-treated cells displayed increased self-renewal potentialin vivoand replenished the niche in both satellite and interstitial cell compartments. Moreover, we found that BpV treatment induces specific activating chromatin modifications at the promoter regions of genes associated with stem cell fate, includingSca-1andPw1 Thus, our findings indicate that BpV resets the cell fate program by specific epigenetic regulations, such that the committed myogenic cell fate is redirected to an earlier progenitor cell fate stage, which leads to an enhanced regenerative stem cell potential.-Smeriglio, P., Alonso-Martin, S., Masciarelli, S., Madaro, L., Iosue, I., Marrocco, V., Relaix, F., Fazi, F., Marazzi, G., Sassoon, D. A., Bouché, M. Phosphotyrosine phosphatase inhibitor bisperoxovanadium endows myogenic cells with enhanced muscle stem cell functionsviaepigenetic modulation of Sca-1 and Pw1 promoters.


Assuntos
Antígenos Ly/genética , Epigênese Genética , Fatores de Transcrição Kruppel-Like/genética , Proteínas de Membrana/genética , Células Musculares/efeitos dos fármacos , Mioblastos Esqueléticos/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Compostos de Vanádio/farmacologia , Animais , Western Blotting , Linhagem Celular , Células Cultivadas , Expressão Gênica/efeitos dos fármacos , Camundongos Nus , Camundongos Transgênicos , Microscopia de Fluorescência , Células Musculares/citologia , Células Musculares/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/lesões , Músculo Esquelético/fisiopatologia , Mioblastos Esqueléticos/citologia , Mioblastos Esqueléticos/metabolismo , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Proteínas Tirosina Fosfatases/metabolismo , Regeneração/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...