Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Cancer ; 19(1): 619, 2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-31234811

RESUMO

BACKGROUND: Succinate dehydrogenase (SDH) loss and mastermind-like 3 (MAML3) translocation are two clinically important genetic alterations that correlate with increased rates of metastasis in subtypes of human paraganglioma and pheochromocytoma (PPGL) neuroendocrine tumors. Although hypotheses propose that succinate accumulation after SDH loss poisons dioxygenases and activates pseudohypoxia and epigenomic hypermethylation, it remains unclear whether these mechanisms account for oncogenic transcriptional patterns. Additionally, MAML3 translocation has recently been identified as a genetic alteration in PPGL, but is poorly understood. We hypothesize that a key to understanding tumorigenesis driven by these genetic alterations is identification of the transcription factors responsible for the observed oncogenic transcriptional changes. METHODS: We leverage publicly-available human tumor gene expression profiling experiments (N = 179) to reconstruct a PPGL tumor-specific transcriptional network. We subsequently use the inferred transcriptional network to perform master regulator analyses nominating transcription factors predicted to control oncogenic transcription in specific PPGL molecular subtypes. Results are validated by analysis of an independent collection of PPGL tumor specimens (N = 188). We then perform a similar master regulator analysis in SDH-loss mouse embryonic fibroblasts (MEFs) to infer aspects of SDH loss master regulator response conserved across species and tissue types. RESULTS: A small number of master regulator transcription factors are predicted to drive the observed subtype-specific gene expression patterns in SDH loss and MAML3 translocation-positive PPGL. Interestingly, although EPAS1 perturbation is detectible in SDH-loss and VHL-loss tumors, it is by no means the most potent factor driving observed patterns of transcriptional dysregulation. Analysis of conserved SDH-loss master regulators in human tumors and MEFs implicated ZNF423, a known modulator of retinoic acid response in neuroblastoma. Subsequent functional analysis revealed a blunted cell death response to retinoic acid in SDH-loss MEFs and blunted differentiation response in SDH-inhibited SH-SY5Y neuroblastoma cells. CONCLUSIONS: The unbiased analyses presented here nominate specific transcription factors that are likely drivers of oncogenic transcription in PPGL tumors. This information has the potential to be exploited for targeted therapy. Additionally, the observation that SDH loss or inhibition results in blunted retinoic acid response suggests a potential developmental etiology for this tumor subtype.


Assuntos
Neoplasias das Glândulas Suprarrenais/genética , Proteínas de Ligação a DNA/genética , Proteínas de Membrana/genética , Feocromocitoma/genética , Succinato Desidrogenase/genética , Fatores de Transcrição/genética , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Algoritmos , Animais , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Bases de Dados Genéticas , Fibroblastos , Humanos , Camundongos/embriologia , Mutação , Transativadores , Fatores de Transcrição/metabolismo , Transcriptoma , Translocação Genética , Tretinoína/metabolismo
2.
Mol Ther Methods Clin Dev ; 9: 270-277, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29707601

RESUMO

Multiple sclerosis (MS) is a debilitating disease for which regenerative therapies are sought. We have previously described human antibodies and DNA aptamer-streptavidin conjugates that promote remyelination after systemic injection into mice infected by Theiler's murine encephalomyelitis virus. Here, we report an in vitro assay of myelin binding with results that correlate with remyelination outcome in vivo, as shown for data from a set of DNA aptamer complexes of different size and formulation. This in vitro assay will be valuable for future screening of MS regenerative therapies targeting remyelination.

3.
Expert Opin Biol Ther ; 18(5): 545-560, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29460650

RESUMO

INTRODUCTION: Multiple sclerosis (MS) is a chronic and progressive inflammatory demyelinating disease of the human central nervous system (CNS) and is the most common disabling neurological condition in young adults, resulting in severe neurological defects. No curative or long-term progression-inhibiting therapy has yet been developed. However, recent investigation has revealed potential strategies that do not merely modulate potentially pathogenic autoimmune responses, but stimulate remyelination within CNS lesions. AREAS COVERED: We discuss the history and development of natural human IgM-isotype immunoglobulins (HIgMs) and recently-identified aptamer-conjugates that have been shown to enhance endogenous myelin repair in animal models of demyelination by acting on myelin-producing oligodendrocytes (OLs) or oligodendrocyte progenitor cells (OPCs) within CNS lesions. We also discuss future development aims and applications for these important novel technologies. EXPERT OPINION: Aptamer conjugate Myaptavin-3064 and recombinant human IgM-isotype antibody rHIgM22 regenerate CNS myelin, thereby reducing axonal degeneration and offering the potential of recovery from MS relapses, reversal of disability and prevention of disease progression. Advancement of these technologies into the clinic for MS treatment is therefore a top priority. It remains unclear to what extent the therapeutic modalities of remyelinating antibodies and aptamers may synergize with other currently-approved therapies to yield enhanced therapeutic effects.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Produtos Biológicos/uso terapêutico , Doenças do Sistema Nervoso Central/tratamento farmacológico , Imunoconjugados/uso terapêutico , Remielinização/efeitos dos fármacos , Adulto , Animais , Aptâmeros de Peptídeos/uso terapêutico , Doenças Desmielinizantes/tratamento farmacológico , Humanos , Esclerose Múltipla/tratamento farmacológico , Regeneração/efeitos dos fármacos , Remielinização/fisiologia , Adulto Jovem
4.
Gastroenterology ; 153(2): 521-535.e20, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28438610

RESUMO

BACKGROUND & AIMS: Depletion of interstitial cells of Cajal (ICCs) is common in diabetic gastroparesis. However, in approximately 20% of patients with diabetes, gastric emptying (GE) is accelerated. GE also occurs faster in obese individuals, and is associated with increased blood levels of glucose in patients with type 2 diabetes. To understand the fate of ICCs in hyperinsulinemic, hyperglycemic states characterized by rapid GE, we studied mice with mutation of the leptin receptor (Leprdb/db), which in our colony had accelerated GE. We also investigated hyperglycemia-induced signaling in the ICC lineage and ICC dependence on glucose oxidative metabolism in mice with disruption of the succinate dehydrogenase complex, subunit C gene (Sdhc). METHODS: Mice were given breath tests to analyze GE of solids. ICCs were studied by flow cytometry, intracellular electrophysiology, isometric contractility measurement, reverse-transcription polymerase chain reaction, immunoblot, immunohistochemistry, enzyme-linked immunosorbent assays, and metabolite assays; cells and tissues were manipulated pharmacologically and by RNA interference. Viable cell counts, proliferation, and apoptosis were determined by methyltetrazolium, Ki-67, proliferating cell nuclear antigen, bromodeoxyuridine, and caspase-Glo 3/7 assays. Sdhc was disrupted in 2 different strains of mice via cre recombinase. RESULTS: In obese, hyperglycemic, hyperinsulinemic female Leprdb/db mice, GE was accelerated and gastric ICC and phasic cholinergic responses were increased. Female KitK641E/+ mice, which have genetically induced hyperplasia of ICCs, also had accelerated GE. In isolated cells of the ICC lineage and gastric organotypic cultures, hyperglycemia stimulated proliferation by mitogen-activated protein kinase 1 (MAPK1)- and MAPK3-dependent stabilization of ets variant 1-a master transcription factor for ICCs-and consequent up-regulation of v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog (KIT) receptor tyrosine kinase. Opposite changes occurred in mice with disruption of Sdhc. CONCLUSIONS: Hyperglycemia increases ICCs via oxidative metabolism-dependent, MAPK1- and MAPK3-mediated stabilization of ets variant 1 and increased expression of KIT, causing rapid GE. Increases in ICCs might contribute to the acceleration in GE observed in some patients with diabetes.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Esvaziamento Gástrico/fisiologia , Hiperglicemia/fisiopatologia , Células Intersticiais de Cajal/citologia , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas Proto-Oncogênicas c-kit/fisiologia , Fatores de Transcrição/fisiologia , Animais , Feminino , Humanos , Células Intersticiais de Cajal/fisiologia , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/fisiologia , Proteína Quinase 3 Ativada por Mitógeno/fisiologia , Receptores para Leptina/genética , Regulação para Cima
5.
Congenit Heart Dis ; 11(5): 452-461, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27452334

RESUMO

OBJECTIVE: To use whole exome sequencing (WES) of a family trio to identify a genetic cause for polyvalvular syndrome. METHODS AND RESULTS: A male child was born with mild pulmonary valve stenosis and mild aortic root dilatation, and an atrial septal defect, ventricular septal defect, and patent ductus arteriosus that were closed surgically. Subsequently, the phenotype of polyvalvular syndrome with involvement of both semilunar and both atrioventricular valves emerged. His family history was negative for congenital heart disease. Because of hypotonia, myopia, soft pale skin, joint hypermobility, and mild facial dysmorphism, either Noonan syndrome- or William syndrome-spectrum disorders were suspected clinically. However, chromosomal analysis was normal and commercially available Noonan syndrome and William syndrome genetic tests were negative. Whole exome sequencing of the patient and both parents was performed. Variants were analyzed by sporadic and autosomal recessive inheritance models. A sporadic mutation, annotated as c.1491 T > A, in TAB2, resulting in a nonsense mutation, p.Y497X, in the TAB2-encoded TGF-beta activated kinase 1 (TAK1) was identified as the most likely disease-susceptibility gene. This mutation results in elimination of the terminal 197 amino acids, including the C-terminal binding motif critical for interactions with TRAF6 and TAK1. CONCLUSIONS: The combination of WES, genomic triangulation, and systems biology has uncovered perturbations in TGF-beta activated kinase 1 signaling as a novel pathogenic substrate for polyvalvular syndrome.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Códon sem Sentido , DNA/genética , Sequenciamento do Exoma/métodos , Doenças das Valvas Cardíacas/genética , Metagenômica/métodos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Análise Mutacional de DNA , Seguimentos , Previsões , Doenças das Valvas Cardíacas/congênito , Doenças das Valvas Cardíacas/enzimologia , Humanos , Recém-Nascido , Masculino , Linhagem , Síndrome
6.
BMC Med Genet ; 16: 91, 2015 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-26449372

RESUMO

BACKGROUND: Putative G-quadruplex-forming sequences (PQS) have long been implicated in regulation of transcription, though the actual mechanisms are not well understood. One proposed mechanism involves the activity of PQS-specific helicases belonging to the RecQ helicase family. However, patterns of PQS that correlate with transcriptional sensitivity to RecQ helicases are not well studied, and no adequate transcriptional model exists to account for PQS effects. METHODS: To better understand PQS transcriptional effects, we analyze PQS motifs in genes differentially-transcribed in Bloom Syndrome (BS) and Werner Syndrome (WS), two disorders resulting in loss of PQS-interacting RecQ helicases.  We also correlate PQS genome-wide with transcription in multiple human cells lines while controlling for epigenetic status.  Finally, we perform neural network clustering of PQS motifs to assess whether certain motifs are over-represented in genes sensitive to RecQ helicase loss. RESULTS: By analyzing PQS motifs in promoters of genes differentially-transcribed in BS and WS, we demonstrate that abundance of promoter PQS is generally higher in down-regulated genes and lower in up-regulated genes, and show that these effects are position-dependent. To interpret these correlations we determined genome-wide PQS correlations with transcription while controlling for epigenetic status. Our results identify multiple discrete transcription start site-proximal positions where PQS are correlated with either increased or decreased transcription. Finally, we report neural network clustering analysis of PQS motifs demonstrating that genes differentially-expressed in BS and WS are significantly biased in PQS motif composition. CONCLUSIONS: Our findings unveil unappreciated detail in the relationship between PQS, RecQ helicases, and transcription. We show that promoter PQS are generally correlated with reduced gene expression, and that this effect is relieved by RecQ helicases. We also show that PQS at certain positions on the downstream sense strand are correlated with increased transcription. We therefore propose a new transcriptional model in which promoter PQS have at least two distinct types of transcriptional regulatory effects.


Assuntos
Síndrome de Bloom/genética , DNA/química , Quadruplex G , RecQ Helicases/metabolismo , Transcrição Gênica , Síndrome de Werner/genética , Síndrome de Bloom/enzimologia , Linhagem Celular , Biologia Computacional/métodos , Epigênese Genética , Regulação da Expressão Gênica , Genoma Humano , Humanos , Modelos Genéticos , Regiões Promotoras Genéticas , Síndrome de Werner/enzimologia
7.
Nucleic Acid Ther ; 25(1): 11-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25536292

RESUMO

DNA aptamer oligonucleotides and their protein conjugates show promise as therapeutics in animal models of diseases such as multiple sclerosis. These molecules are large and highly charged, raising questions about their biodistribution and pharmacokinetics in mammals. Here we exploit the power of quantitative polymerase chain reaction to accurately quantitate the tissue distribution of 40-nucleotide DNA aptamers and their streptavidin conjugates after intraperitoneal injection in mice. We show remarkably rapid distribution to peripheral tissues including the central nervous system. Modeling of tissue distribution data reveals the importance of DNA aptamer sequence, 3' modification, and protein conjugation in enhancing tissue exposure. These data help to interpret the previously observed effectiveness of aptamer conjugates, as opposed to free aptamers, in stimulating central nervous system remyelination in a mouse model of multiple sclerosis.


Assuntos
Aptâmeros de Nucleotídeos/farmacocinética , Animais , Animais não Endogâmicos , Aptâmeros de Nucleotídeos/genética , Área Sob a Curva , Sequência de Bases , Feminino , Terapia Genética , Camundongos , Esclerose Múltipla/terapia , Reação em Cadeia da Polimerase em Tempo Real , Sensibilidade e Especificidade , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...