Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 59(8): 5339-5349, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32250599

RESUMO

The OP4-(Li/Na)xCoO2 phase is an unusual lamellar oxide with a 1:1 alternation between Li and Na interslab spaces. In order to probe the local structure, electronic structure, and dynamics, 7Li and 23Na magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy was performed in complementarity to X-ray diffraction and electronic and magnetic properties measurements. 7Li MAS NMR showed that NMR shifts result from two contributions: the Fermi contact and the Knight shifts due to the presence of both localized and delocalized electrons, which is really unusual. 7Li MAS NMR clearly shows several Li environments, indicating that, moreover, Co ions with different local electronic structures are formed, probably due to the arrangement of the Na+ ions in the next cationic layer. 23Na MAS NMR showed that some Na+ ions are located in the Li layer, which was not previously considered in the structural model. The Rietveld refinement of the synchrotron XRD led to the OP4-[Li0.42Na0.05]Na0.32CoO2 formula for the material. In addition, 7Li and 23Na MAS NMR spectroscopies provide information about the cationic mobility in the material: Whereas no exchange is observed for 7Li up to 450 K, the 23Na spectrum already reveals a single average signal at room temperature due to a much larger ionic mobility.

2.
Solid State Nucl Magn Reson ; 103: 1-8, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31404814

RESUMO

Sodium ion batteries offer an inexpensive alternative to lithium ion batteries, particularly for large-scale applications such as grid storage that do not require fast charging rates and high power output. Moreover, the use of polyanionic structures as cathode materials afford incredibly high structural stability relative to layered transition metal oxides that can undergo a structural collapse upon full removal of the charge carrying ions. Sodium iron fluorophosphate, Na2FePO4F, has demonstrated its viability as a potential cathode material for sodium ion batteries, having a robust framework even after multiple charge-discharge cycles. Although solid-state NMR has traditionally been an excellent method for the determination of local structure and dynamic properties of cathode materials during the electrochemical cycling process, reliable assignment of the 23Na chemical shifts resulting from the paramagnetic hyperfine interaction can be difficult when using only empirical rules. Here we present the use of density functional theory calculations to assign the experimentally observed NMR shifts to the crystallographic sites in Na2FePO4F, where it is found that the results do not agree with the previously reported assignment based upon simple geometry arguments. Furthermore, we report the justification of the proposed desodiation mechanism in Na2FePO4F on the basis of theoretical arguments, in good agreement with experimental NMR results reported previously.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA