Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Eur Heart J Cardiovasc Imaging ; 25(3): 383-395, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-37883712

RESUMO

AIMS: Echocardiography is a cornerstone in cardiac imaging, and left ventricular (LV) ejection fraction (EF) is a key parameter for patient management. Recent advances in artificial intelligence (AI) have enabled fully automatic measurements of LV volumes and EF both during scanning and in stored recordings. The aim of this study was to evaluate the impact of implementing AI measurements on acquisition and processing time and test-retest reproducibility compared with standard clinical workflow, as well as to study the agreement with reference in large internal and external databases. METHODS AND RESULTS: Fully automatic measurements of LV volumes and EF by a novel AI software were compared with manual measurements in the following clinical scenarios: (i) in real time use during scanning of 50 consecutive patients, (ii) in 40 subjects with repeated echocardiographic examinations and manual measurements by 4 readers, and (iii) in large internal and external research databases of 1881 and 849 subjects, respectively. Real-time AI measurements significantly reduced the total acquisition and processing time by 77% (median 5.3 min, P < 0.001) compared with standard clinical workflow. Test-retest reproducibility of AI measurements was superior in inter-observer scenarios and non-inferior in intra-observer scenarios. AI measurements showed good agreement with reference measurements both in real time and in large research databases. CONCLUSION: The software reduced the time taken to perform and volumetrically analyse routine echocardiograms without a decrease in accuracy compared with experts.


Assuntos
Inteligência Artificial , Disfunção Ventricular Esquerda , Humanos , Volume Sistólico , Reprodutibilidade dos Testes , Função Ventricular Esquerda , Ecocardiografia/métodos , Disfunção Ventricular Esquerda/diagnóstico por imagem
2.
Ultrasound Med Biol ; 50(1): 47-56, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37813702

RESUMO

OBJECTIVE: Echocardiography, a critical tool for assessing left atrial (LA) volume, often relies on manual or semi-automated measurements. This study introduces a fully automated, real-time method for measuring LA volume in both 2-D and 3-D imaging, in the aim of offering accuracy comparable to that of expert assessments while saving time and reducing operator variability. METHODS: We developed an automated pipeline comprising a network to identify the end-systole (ES) time point and robust 2-D and 3-D U-Nets for segmentation. We employed data sets of 789 2-D images and 286 3-D recordings and explored various training regimes, including recurrent networks and pseudo-labeling, to estimate volume curves. RESULTS: Our baseline results revealed an average volume difference of 2.9 mL for 2-D and 7.8 mL for 3-D, respectively, compared with manual methods. The application of pseudo-labeling to all frames in the cine loop generally led to more robust volume curves and notably improved ES measurement in cases with limited data. CONCLUSION: Our results highlight the potential of automated LA volume estimation in clinical practice. The proposed prototype application, capable of processing real-time data from a clinical ultrasound scanner, provides valuable temporal volume curve information in the echo lab.


Assuntos
Aprendizado Profundo , Átrios do Coração/diagnóstico por imagem , Ecocardiografia/métodos , Imageamento Tridimensional , Processamento de Imagem Assistida por Computador/métodos
4.
J Am Soc Echocardiogr ; 36(7): 788-799, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36933849

RESUMO

AIMS: Assessment of left ventricular (LV) function by echocardiography is hampered by modest test-retest reproducibility. A novel artificial intelligence (AI) method based on deep learning provides fully automated measurements of LV global longitudinal strain (GLS) and may improve the clinical utility of echocardiography by reducing user-related variability. The aim of this study was to assess within-patient test-retest reproducibility of LV GLS measured by the novel AI method in repeated echocardiograms recorded by different echocardiographers and to compare the results to manual measurements. METHODS: Two test-retest data sets (n = 40 and n = 32) were obtained at separate centers. Repeated recordings were acquired in immediate succession by 2 different echocardiographers at each center. For each data set, 4 readers measured GLS in both recordings using a semiautomatic method to construct test-retest interreader and intrareader scenarios. Agreement, mean absolute difference, and minimal detectable change (MDC) were compared to analyses by AI. In a subset of 10 patients, beat-to-beat variability in 3 cardiac cycles was assessed by 2 readers and AI. RESULTS: Test-retest variability was lower with AI compared with interreader scenarios (data set I: MDC = 3.7 vs 5.5, mean absolute difference = 1.4 vs 2.1, respectively; data set II: MDC = 3.9 vs 5.2, mean absolute difference = 1.6 vs 1.9, respectively; all P < .05). There was bias in GLS measurements in 13 of 24 test-retest interreader scenarios (largest bias, 3.2 strain units). In contrast, there was no bias in measurements by AI. Beat-to-beat MDCs were 1,5, 2.1, and 2.3 for AI and the 2 readers, respectively. Processing time for analyses of GLS by the AI method was 7.9 ± 2.8 seconds. CONCLUSION: A fast AI method for automated measurements of LV GLS reduced test-retest variability and removed bias between readers in both test-retest data sets. By improving the precision and reproducibility, AI may increase the clinical utility of echocardiography.


Assuntos
Aprendizado Profundo , Disfunção Ventricular Esquerda , Humanos , Reprodutibilidade dos Testes , Inteligência Artificial , Função Ventricular Esquerda , Ecocardiografia/métodos , Disfunção Ventricular Esquerda/diagnóstico por imagem , Volume Sistólico
5.
Front Neurol ; 14: 1064492, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36816558

RESUMO

Introduction: Optic nerve sheath diameter (ONSD) has shown promise as a noninvasive parameter for estimating intracranial pressure (ICP). In this study, we evaluated a novel automated method of measuring the ONSD in transorbital ultrasound imaging. Methods: From adult traumatic brain injury (TBI) patients with invasive ICP monitoring, bedside manual ONSD measurements and ultrasound videos of the optic nerve sheath complex were simultaneously acquired. Automatic ONSD measurements were obtained by the processing of the ultrasound videos by a novel software based on a machine learning approach for segmentation of the optic nerve sheath. Agreement between manual and automated measurements, as well as their correlation to invasive ICP, was evaluated. Furthermore, the ability to distinguish dichotomized ICP for manual and automatic measurements of ONSD was compared, both for ICP dichotomized at ≥20 mmHg and at the 50th percentile (≥14 mmHg). Finally, we performed an exploratory subgroup analysis based on the software's judgment of optic nerve axis alignment to elucidate the reasons for variation in the agreement between automatic and manual measurements. Results: A total of 43 ultrasound examinations were performed on 25 adult patients with TBI, resulting in 86 image sequences covering the right and left eyes. The median pairwise difference between automatically and manually measured ONSD was 0.06 mm (IQR -0.44 to 0.38 mm; p = 0.80). The manually measured ONSD showed a positive correlation with ICP, while automatically measured ONSD showed a trend toward, but not a statistically significant correlation with ICP. When examining the ability to distinguish dichotomized ICP, manual and automatic measurements performed with similar accuracy both for an ICP cutoff at 20 mmHg (manual: AUC 0.74, 95% CI 0.58-0.88; automatic: AUC 0.83, 95% CI 0.66-0.93) and for an ICP cutoff at 14 mmHg (manual: AUC 0.70, 95% CI 0.52-0.85; automatic: AUC 0.68, 95% CI 0.48-0.83). In the exploratory subgroup analysis, we found that the agreement between measurements was higher in the subgroup where the automatic software evaluated the optic nerve axis alignment as good as compared to intermediate/poor. Conclusion: The novel automated method of measuring the ONSD on the ultrasound videos using segmentation of the optic nerve sheath showed a reasonable agreement with manual measurements and performed equally well in distinguishing high and low ICP.

6.
Ultrasound Med Biol ; 49(1): 333-346, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36280443

RESUMO

Measurements of cardiac function such as left ventricular ejection fraction and myocardial strain are typically based on 2-D ultrasound imaging. The reliability of these measurements depends on the correct pose of the transducer such that the 2-D imaging plane properly aligns with the heart for standard measurement views and is thus dependent on the operator's skills. We propose a deep learning tool that suggests transducer movements to help users navigate toward the required standard views while scanning. The tool can simplify echocardiography for less experienced users and improve image standardization for more experienced users. Training data were generated by slicing 3-D ultrasound volumes, which permits simulation of the movements of a 2-D transducer. Neural networks were further trained to calculate the transducer position in a regression fashion. The method was validated and tested on 2-D images from several data sets representative of a prospective clinical setting. The method proposed the adequate transducer movement 75% of the time when averaging over all degrees of freedom and 95% of the time when considering transducer rotation solely. Real-time application examples illustrate the direct relation between the transducer movements, the ultrasound image and the provided feedback.


Assuntos
Ecocardiografia Tridimensional , Função Ventricular Esquerda , Volume Sistólico , Reprodutibilidade dos Testes , Estudos Prospectivos , Ecocardiografia/métodos
7.
Front Med (Lausanne) ; 9: 971873, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36186805

RESUMO

Over the past decades, histopathological cancer diagnostics has become more complex, and the increasing number of biopsies is a challenge for most pathology laboratories. Thus, development of automatic methods for evaluation of histopathological cancer sections would be of value. In this study, we used 624 whole slide images (WSIs) of breast cancer from a Norwegian cohort. We propose a cascaded convolutional neural network design, called H2G-Net, for segmentation of breast cancer region from gigapixel histopathological images. The design involves a detection stage using a patch-wise method, and a refinement stage using a convolutional autoencoder. To validate the design, we conducted an ablation study to assess the impact of selected components in the pipeline on tumor segmentation. Guiding segmentation, using hierarchical sampling and deep heatmap refinement, proved to be beneficial when segmenting the histopathological images. We found a significant improvement when using a refinement network for post-processing the generated tumor segmentation heatmaps. The overall best design achieved a Dice similarity coefficient of 0.933±0.069 on an independent test set of 90 WSIs. The design outperformed single-resolution approaches, such as cluster-guided, patch-wise high-resolution classification using MobileNetV2 (0.872±0.092) and a low-resolution U-Net (0.874±0.128). In addition, the design performed consistently on WSIs across all histological grades and segmentation on a representative × 400 WSI took ~ 58 s, using only the central processing unit. The findings demonstrate the potential of utilizing a refinement network to improve patch-wise predictions. The solution is efficient and does not require overlapping patch inference or ensembling. Furthermore, we showed that deep neural networks can be trained using a random sampling scheme that balances on multiple different labels simultaneously, without the need of storing patches on disk. Future work should involve more efficient patch generation and sampling, as well as improved clustering.

8.
JACC Cardiovasc Imaging ; 14(10): 1918-1928, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34147442

RESUMO

OBJECTIVES: This study sought to examine if fully automated measurements of global longitudinal strain (GLS) using a novel motion estimation technology based on deep learning and artificial intelligence (AI) are feasible and comparable with a conventional speckle-tracking application. BACKGROUND: GLS is an important parameter when evaluating left ventricular function. However, analyses of GLS are time consuming and demand expertise, and thus are underused in clinical practice. METHODS: In this study, 200 patients with a wide range of left ventricle (LV) function were included. Three standard apical cine-loops were analyzed using the AI pipeline. The AI method measured GLS and was compared with a commercially available semiautomatic speckle-tracking software (EchoPAC v202, GE Healthcare. RESULTS: The AI method succeeded to both correctly classify all 3 standard apical views and perform timing of cardiac events in 89% of patients. Furthermore, the method successfully performed automatic segmentation, motion estimates, and measurements of GLS in all examinations, across different cardiac pathologies and throughout the spectrum of LV function. GLS was -12.0 ± 4.1% for the AI method and -13.5 ± 5.3% for the reference method. Bias was -1.4 ± 0.3% (95% limits of agreement: 2.3 to -5.1), which is comparable with intervendor studies. The AI method eliminated measurement variability and a complete GLS analysis was processed within 15 s. CONCLUSIONS: Through the range of LV function this novel AI method succeeds, without any operator input, to automatically identify the 3 standard apical views, perform timing of cardiac events, trace the myocardium, perform motion estimation, and measure GLS. Fully automated measurements based on AI could facilitate the clinical implementation of GLS.


Assuntos
Inteligência Artificial , Ventrículos do Coração , Ecocardiografia , Ventrículos do Coração/diagnóstico por imagem , Humanos , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Função Ventricular Esquerda
9.
IEEE Trans Med Imaging ; 40(5): 1340-1351, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33493114

RESUMO

Deformation imaging in echocardiography has been shown to have better diagnostic and prognostic value than conventional anatomical measures such as ejection fraction. However, despite clinical availability and demonstrated efficacy, everyday clinical use remains limited at many hospitals. The reasons are complex, but practical robustness has been questioned, and a large inter-vendor variability has been demonstrated. In this work, we propose a novel deep learning based framework for motion estimation in echocardiography, and use this to fully automate myocardial function imaging. A motion estimator was developed based on a PWC-Net architecture, which achieved an average end point error of (0.06±0.04) mm per frame using simulated data from an open access database, on par or better compared to previously reported state of the art. We further demonstrate unique adaptability to image artifacts such as signal dropouts, made possible using trained models that incorporate relevant image augmentations. Further, a fully automatic pipeline consisting of cardiac view classification, event detection, myocardial segmentation and motion estimation was developed and used to estimate left ventricular longitudinal strain in vivo. The method showed promise by achieving a mean deviation of (-0.7±1.6)% compared to a semi-automatic commercial solution for N=30 patients with relevant disease, within the expected limits of agreement. We thus believe that learning-based motion estimation can facilitate extended use of strain imaging in clinical practice.


Assuntos
Aprendizado Profundo , Ecocardiografia , Coração/diagnóstico por imagem , Ventrículos do Coração/diagnóstico por imagem , Humanos , Movimento (Física)
10.
Front Med (Lausanne) ; 8: 816281, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35155486

RESUMO

Application of deep learning on histopathological whole slide images (WSIs) holds promise of improving diagnostic efficiency and reproducibility but is largely dependent on the ability to write computer code or purchase commercial solutions. We present a code-free pipeline utilizing free-to-use, open-source software (QuPath, DeepMIB, and FastPathology) for creating and deploying deep learning-based segmentation models for computational pathology. We demonstrate the pipeline on a use case of separating epithelium from stroma in colonic mucosa. A dataset of 251 annotated WSIs, comprising 140 hematoxylin-eosin (HE)-stained and 111 CD3 immunostained colon biopsy WSIs, were developed through active learning using the pipeline. On a hold-out test set of 36 HE and 21 CD3-stained WSIs a mean intersection over union score of 95.5 and 95.3% was achieved on epithelium segmentation. We demonstrate pathologist-level segmentation accuracy and clinical acceptable runtime performance and show that pathologists without programming experience can create near state-of-the-art segmentation solutions for histopathological WSIs using only free-to-use software. The study further demonstrates the strength of open-source solutions in its ability to create generalizable, open pipelines, of which trained models and predictions can seamlessly be exported in open formats and thereby used in external solutions. All scripts, trained models, a video tutorial, and the full dataset of 251 WSIs with ~31 k epithelium annotations are made openly available at https://github.com/andreped/NoCodeSeg to accelerate research in the field.

11.
Artigo em Inglês | MEDLINE | ID: mdl-32746187

RESUMO

Segmentation of cardiac structures is one of the fundamental steps to estimate volumetric indices of the heart. This step is still performed semiautomatically in clinical routine and is, thus, prone to interobserver and intraobserver variabilities. Recent studies have shown that deep learning has the potential to perform fully automatic segmentation. However, the current best solutions still suffer from a lack of robustness in terms of accuracy and number of outliers. The goal of this work is to introduce a novel network designed to improve the overall segmentation accuracy of left ventricular structures (endocardial and epicardial borders) while enhancing the estimation of the corresponding clinical indices and reducing the number of outliers. This network is based on a multistage framework where both the localization and segmentation steps are optimized jointly through an end-to-end scheme. Results obtained on a large open access data set show that our method outperforms the current best-performing deep learning solution with a lighter architecture and achieved an overall segmentation accuracy lower than the intraobserver variability for the epicardial border (i.e., on average a mean absolute error of 1.5 mm and a Hausdorff distance of 5.1mm) with 11% of outliers. Moreover, we demonstrate that our method can closely reproduce the expert analysis for the end-diastolic and end-systolic left ventricular volumes, with a mean correlation of 0.96 and a mean absolute error of 7.6 ml. Concerning the ejection fraction of the left ventricle, results are more contrasted with a mean correlation coefficient of 0.83 and an absolute mean error of 5.0%, producing scores that are slightly below the intraobserver margin. Based on this observation, areas for improvement are suggested.


Assuntos
Aprendizado Profundo , Ecocardiografia/métodos , Ventrículos do Coração/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Humanos
12.
Artigo em Inglês | MEDLINE | ID: mdl-32175861

RESUMO

Volume and ejection fraction (EF) measurements of the left ventricle (LV) in 2-D echocardiography are associated with a high uncertainty not only due to interobserver variability of the manual measurement, but also due to ultrasound acquisition errors such as apical foreshortening. In this work, a real-time and fully automated EF measurement and foreshortening detection method is proposed. The method uses several deep learning components, such as view classification, cardiac cycle timing, segmentation and landmark extraction, to measure the amount of foreshortening, LV volume, and EF. A data set of 500 patients from an outpatient clinic was used to train the deep neural networks, while a separate data set of 100 patients from another clinic was used for evaluation, where LV volume and EF were measured by an expert using clinical protocols and software. A quantitative analysis using 3-D ultrasound showed that EF is considerably affected by apical foreshortening, and that the proposed method can detect and quantify the amount of apical foreshortening. The bias and standard deviation of the automatic EF measurements were -3.6 ± 8.1%, while the mean absolute difference was measured at 7.2% which are all within the interobserver variability and comparable with related studies. The proposed real-time pipeline allows for a continuous acquisition and measurement workflow without user interaction, and has the potential to significantly reduce the time spent on the analysis and measurement error due to foreshortening, while providing quantitative volume measurements in the everyday echo lab.


Assuntos
Aprendizado Profundo , Ecocardiografia/métodos , Ventrículos do Coração/diagnóstico por imagem , Volume Sistólico/fisiologia , Humanos , Processamento de Imagem Assistida por Computador , Função Ventricular Esquerda/fisiologia
13.
IEEE Trans Med Imaging ; 38(9): 2198-2210, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30802851

RESUMO

Delineation of the cardiac structures from 2D echocardiographic images is a common clinical task to establish a diagnosis. Over the past decades, the automation of this task has been the subject of intense research. In this paper, we evaluate how far the state-of-the-art encoder-decoder deep convolutional neural network methods can go at assessing 2D echocardiographic images, i.e., segmenting cardiac structures and estimating clinical indices, on a dataset, especially, designed to answer this objective. We, therefore, introduce the cardiac acquisitions for multi-structure ultrasound segmentation dataset, the largest publicly-available and fully-annotated dataset for the purpose of echocardiographic assessment. The dataset contains two and four-chamber acquisitions from 500 patients with reference measurements from one cardiologist on the full dataset and from three cardiologists on a fold of 50 patients. Results show that encoder-decoder-based architectures outperform state-of-the-art non-deep learning methods and faithfully reproduce the expert analysis for the end-diastolic and end-systolic left ventricular volumes, with a mean correlation of 0.95 and an absolute mean error of 9.5 ml. Concerning the ejection fraction of the left ventricle, results are more contrasted with a mean correlation coefficient of 0.80 and an absolute mean error of 5.6%. Although these results are below the inter-observer scores, they remain slightly worse than the intra-observer's ones. Based on this observation, areas for improvement are defined, which open the door for accurate and fully-automatic analysis of 2D echocardiographic images.


Assuntos
Aprendizado Profundo , Ecocardiografia/métodos , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Bases de Dados Factuais , Coração/diagnóstico por imagem , Humanos
14.
Ultrasound Med Biol ; 45(2): 374-384, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30470606

RESUMO

Transthoracic echocardiography examinations are usually performed according to a protocol comprising different probe postures providing standard views of the heart. These are used as a basis when assessing cardiac function, and it is essential that the morphophysiological representations are correct. Clinical analysis is often initialized with the current view, and automatic classification can thus be useful in improving today's workflow. In this article, convolutional neural networks (CNNs) are used to create classification models predicting up to seven different cardiac views. Data sets of 2-D ultrasound acquired from studies totaling more than 500 patients and 7000 videos were included. State-of-the-art accuracies of 98.3% ± 0.6% and 98.9% ± 0.6% on single frames and sequences, respectively, and real-time performance with 4.4 ± 0.3 ms per frame were achieved. Further, it was found that CNNs have the potential for use in automatic multiplanar reformatting and orientation guidance. Using 3-D data to train models applicable for 2-D classification, we achieved a median deviation of 4° ± 3° from the optimal orientations.


Assuntos
Ecocardiografia/métodos , Interpretação de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Sistemas Computacionais , Humanos , Imageamento Tridimensional , Modelos Biológicos , Reprodutibilidade dos Testes
15.
J Med Imaging (Bellingham) ; 5(4): 044004, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30840734

RESUMO

Ultrasound images acquired during axillary nerve block procedures can be difficult to interpret. Highlighting the important structures, such as nerves and blood vessels, may be useful for the training of inexperienced users. A deep convolutional neural network is used to identify the musculocutaneous, median, ulnar, and radial nerves, as well as the blood vessels in ultrasound images. A dataset of 49 subjects is collected and used for training and evaluation of the neural network. Several image augmentations, such as rotation, elastic deformation, shadows, and horizontal flipping, are tested. The neural network is evaluated using cross validation. The results showed that the blood vessels were the easiest to detect with a precision and recall above 0.8. Among the nerves, the median and ulnar nerves were the easiest to detect with an F -score of 0.73 and 0.62, respectively. The radial nerve was the hardest to detect with an F -score of 0.39. Image augmentations proved effective, increasing F -score by as much as 0.13. A Wilcoxon signed-rank test showed that the improvement from rotation, shadow, and elastic deformation augmentations were significant and the combination of all augmentations gave the best result. The results are promising; however, there is more work to be done, as the precision and recall are still too low. A larger dataset is most likely needed to improve accuracy, in combination with anatomical and temporal models.

16.
Ultrasound Med Biol ; 43(1): 218-226, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27727021

RESUMO

Ultrasound-guided regional anesthesia can be challenging, especially for inexperienced physicians. The goal of the proposed methods is to create a system that can assist a user in performing ultrasound-guided femoral nerve blocks. The system indicates in which direction the user should move the ultrasound probe to investigate the region of interest and to reach the target site for needle insertion. Additionally, the system provides automatic real-time segmentation of the femoral artery, the femoral nerve and the two layers fascia lata and fascia iliaca. This aids in interpretation of the 2-D ultrasound images and the surrounding anatomy in 3-D. The system was evaluated on 24 ultrasound acquisitions of both legs from six subjects. The estimated target site for needle insertion and the segmentations were compared with those of an expert anesthesiologist. Average target distance was 8.5 mm with a standard deviation of 2.5 mm. The mean absolute differences of the femoral nerve and the fascia segmentations were about 1-3 mm.


Assuntos
Nervo Femoral/diagnóstico por imagem , Bloqueio Nervoso/métodos , Ultrassonografia de Intervenção/métodos , Adulto , Feminino , Humanos , Masculino
17.
IEEE Trans Med Imaging ; 35(4): 967-77, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26625409

RESUMO

Real-time 3D Echocardiography (RT3DE) has been proven to be an accurate tool for left ventricular (LV) volume assessment. However, identification of the LV endocardium remains a challenging task, mainly because of the low tissue/blood contrast of the images combined with typical artifacts. Several semi and fully automatic algorithms have been proposed for segmenting the endocardium in RT3DE data in order to extract relevant clinical indices, but a systematic and fair comparison between such methods has so far been impossible due to the lack of a publicly available common database. Here, we introduce a standardized evaluation framework to reliably evaluate and compare the performance of the algorithms developed to segment the LV border in RT3DE. A database consisting of 45 multivendor cardiac ultrasound recordings acquired at different centers with corresponding reference measurements from three experts are made available. The algorithms from nine research groups were quantitatively evaluated and compared using the proposed online platform. The results showed that the best methods produce promising results with respect to the experts' measurements for the extraction of clinical indices, and that they offer good segmentation precision in terms of mean distance error in the context of the experts' variability range. The platform remains open for new submissions.


Assuntos
Algoritmos , Ecocardiografia Tridimensional/métodos , Ventrículos do Coração/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Humanos
18.
IEEE Trans Med Imaging ; 35(3): 752-61, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26513782

RESUMO

The goal is to create an assistant for ultrasound- guided femoral nerve block. By segmenting and visualizing the important structures such as the femoral artery, we hope to improve the success of these procedures. This article is the first step towards this goal and presents novel real-time methods for identifying and reconstructing the femoral artery, and registering a model of the surrounding anatomy to the ultrasound images. The femoral artery is modelled as an ellipse. The artery is first detected by a novel algorithm which initializes the artery tracking. This algorithm is completely automatic and requires no user interaction. Artery tracking is achieved with a Kalman filter. The 3D artery is reconstructed in real-time with a novel algorithm and a tracked ultrasound probe. A mesh model of the surrounding anatomy was created from a CT dataset. Registration of this model is achieved by landmark registration using the centerpoints from the artery tracking and the femoral artery centerline of the model. The artery detection method was able to automatically detect the femoral artery and initialize the tracking in all 48 ultrasound sequences. The tracking algorithm achieved an average dice similarity coefficient of 0.91, absolute distance of 0.33 mm, and Hausdorff distance 1.05 mm. The mean registration error was 2.7 mm, while the average maximum error was 12.4 mm. The average runtime was measured to be 38, 8, 46 and 0.2 milliseconds for the artery detection, tracking, reconstruction and registration methods respectively.


Assuntos
Algoritmos , Artéria Femoral/diagnóstico por imagem , Nervo Femoral/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Bloqueio Nervoso/métodos , Ultrassonografia de Intervenção/métodos , Feminino , Nervo Femoral/cirurgia , Humanos , Masculino
19.
PLoS One ; 10(12): e0144282, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26657513

RESUMO

INTRODUCTION: Our motivation is increased bronchoscopic diagnostic yield and optimized preparation, for navigated bronchoscopy. In navigated bronchoscopy, virtual 3D airway visualization is often used to guide a bronchoscopic tool to peripheral lesions, synchronized with the real time video bronchoscopy. Visualization during navigated bronchoscopy, the segmentation time and methods, differs. Time consumption and logistics are two essential aspects that need to be optimized when integrating such technologies in the interventional room. We compared three different approaches to obtain airway centerlines and surface. METHOD: CT lung dataset of 17 patients were processed in Mimics (Materialize, Leuven, Belgium), which provides a Basic module and a Pulmonology module (beta version) (MPM), OsiriX (Pixmeo, Geneva, Switzerland) and our Tube Segmentation Framework (TSF) method. Both MPM and TSF were evaluated with reference segmentation. Automatic and manual settings allowed us to segment the airways and obtain 3D models as well as the centrelines in all datasets. We compared the different procedures by user interactions such as number of clicks needed to process the data and quantitative measures concerning the quality of the segmentation and centrelines such as total length of the branches, number of branches, number of generations, and volume of the 3D model. RESULTS: The TSF method was the most automatic, while the Mimics Pulmonology Module (MPM) and the Mimics Basic Module (MBM) resulted in the highest number of branches. MPM is the software which demands the least number of clicks to process the data. We found that the freely available OsiriX was less accurate compared to the other methods regarding segmentation results. However, the TSF method provided results fastest regarding number of clicks. The MPM was able to find the highest number of branches and generations. On the other hand, the TSF is fully automatic and it provides the user with both segmentation of the airways and the centerlines. Reference segmentation comparison averages and standard deviations for MPM and TSF correspond to literature. CONCLUSION: The TSF is able to segment the airways and extract the centerlines in one single step. The number of branches found is lower for the TSF method than in Mimics. OsiriX demands the highest number of clicks to process the data, the segmentation is often sparse and extracting the centerline requires the use of another software system. Two of the software systems performed satisfactory with respect to be used in preprocessing CT images for navigated bronchoscopy, i.e. the TSF method and the MPM. According to reference segmentation both TSF and MPM are comparable with other segmentation methods. The level of automaticity and the resulting high number of branches plus the fact that both centerline and the surface of the airways were extracted, are requirements we considered particularly important. The in house method has the advantage of being an integrated part of a navigation platform for bronchoscopy, whilst the other methods can be considered preprocessing tools to a navigation system.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Pulmão/diagnóstico por imagem , Radiografia Torácica , Tomografia Computadorizada por Raios X , Humanos , Software , Interface Usuário-Computador
20.
Int J Comput Assist Radiol Surg ; 10(11): 1811-22, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25684594

RESUMO

PURPOSE: Computer systems are becoming increasingly heterogeneous in the sense that they consist of different processors, such as multi-core CPUs and graphic processing units. As the amount of medical image data increases, it is crucial to exploit the computational power of these processors. However, this is currently difficult due to several factors, such as driver errors, processor differences, and the need for low-level memory handling. This paper presents a novel FrAmework for heterogeneouS medical image compuTing and visualization (FAST). The framework aims to make it easier to simultaneously process and visualize medical images efficiently on heterogeneous systems. METHODS: FAST uses common image processing programming paradigms and hides the details of memory handling from the user, while enabling the use of all processors and cores on a system. The framework is open-source, cross-platform and available online. RESULTS: Code examples and performance measurements are presented to show the simplicity and efficiency of FAST. The results are compared to the insight toolkit (ITK) and the visualization toolkit (VTK) and show that the presented framework is faster with up to 20 times speedup on several common medical imaging algorithms. CONCLUSIONS: FAST enables efficient medical image computing and visualization on heterogeneous systems. Code examples and performance evaluations have demonstrated that the toolkit is both easy to use and performs better than existing frameworks, such as ITK and VTK.


Assuntos
Algoritmos , Sistemas Computacionais , Diagnóstico por Imagem , Processamento de Imagem Assistida por Computador/métodos , Humanos , Processamento de Imagem Assistida por Computador/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...