Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 11(11): e0167336, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27898729

RESUMO

Glycosaminoglycans (GAGs) are linear negatively charged polysaccharides and important components of extracellular matrices and cell surface glycan layers such as the endothelial glycocalyx. The GAG family includes sulfated heparin, heparan sulfate (HS), dermatan sulfate (DS), chondroitin sulfate (CS), keratan sulfate, and non-sulfated hyaluronan. Because relative expression of GAGs is dependent on cell-type and niche, isolating GAGs from cell cultures and tissues may provide insight into cell- and tissue-specific GAG structure and functions. In our objective to obtain structural information about the GAGs expressed on a specialized mouse glomerular endothelial cell culture (mGEnC-1) we adapted a recently published GAG isolation protocol, based on cell lysis, proteinase K and DNase I digestion. Analysis of the GAGs contributing to the mGEnC-1 glycocalyx indicated a large HS and a minor CS content on barium acetate gel. However, isolated GAGs appeared resistant to enzymatic digestion by heparinases. We found that these GAG extracts were heavily contaminated with RNA, which co-migrated with HS in barium acetate gel electrophoresis and interfered with 1,9-dimethylmethylene blue (DMMB) assays, resulting in an overestimation of GAG yields. We hypothesized that RNA may be contaminating GAG extracts from other cell cultures and possibly tissue, and therefore investigated potential RNA contaminations in GAG extracts from two additional cell lines, human umbilical vein endothelial cells and retinal pigmental epithelial cells, and mouse kidney, liver, spleen and heart tissue. GAG extracts from all examined cell lines and tissues contained varying amounts of contaminating RNA, which interfered with GAG quantification using DMMB assays and characterization of GAGs by barium acetate gel electrophoresis. We therefore recommend routinely evaluating the RNA content of GAG extracts and propose a robust protocol for GAG isolation that includes an RNA digestion step.


Assuntos
Glicosaminoglicanos/química , Rim/metabolismo , Fígado/metabolismo , RNA/isolamento & purificação , Baço/metabolismo , Alginatos/química , Animais , Linhagem Celular , Sulfatos de Condroitina/química , Dermatan Sulfato/química , Eletroforese em Gel de Ágar , Ácido Glucurônico/química , Glicosaminoglicanos/isolamento & purificação , Glicosaminoglicanos/normas , Heparitina Sulfato/química , Ácidos Hexurônicos/química , Células Endoteliais da Veia Umbilical Humana , Humanos , Ácido Hialurônico/química , Sulfato de Queratano/química , Camundongos , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/metabolismo
2.
Int J Parasitol ; 46(3): 157-170, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26688390

RESUMO

Glycan molecules from helminth parasites have been associated with diverse biological functions ranging from interactions with neighbouring host cell populations to down-modulation of specific host immunity. Glycoproteins secreted by the intestinal nematode Heligmosomoides polygyrus are of particular interest as the excretory-secretory products (termed HES) of this parasite contain both heat-labile and heat-stable components with immunomodulatory effects. We used MALDI-TOF-MS and LC-MS/MS to analyse the repertoire of N- and O-linked glycans released from Heligmosomoides polygyrus excretory-secretory products by PNGase A and F, ß-elimination and hydrazinolysis revealing a broad range of structures including novel methylhexose- and methylfucose-containing glycans. Monoclonal antibodies to two immunodominant glycans of H. polygyrus, previously designated Glycans A and B, were found to react by glycan array analysis to a methyl-hexose-rich fraction and to a sulphated LacDiNAc (LDN; GalNAcß1-4GlcNAc) structure, respectively. We also analysed the glycan repertoire of a major glycoprotein in Heligmosomoides polygyrus excretory-secretory products, VAL-2, which contains many glycan structures present in Heligmosomoides polygyrus excretory-secretory products including Glycan A. However, it was found that this set of glycans is not responsible for the heat-stable immunomodulatory properties of Heligmosomoides polygyrus excretory-secretory products, as revealed by the inability of VAL-2 to inhibit allergic lung inflammation. Taken together, these studies reveal that H. polygyrus secretes a diverse range of antigenic glycoconjugates, and provides a framework to explore the biological and immunomodulatory roles they may play within the mammalian host.


Assuntos
Glicoproteínas/química , Proteínas de Helminto/química , Nematospiroides dubius/imunologia , Polissacarídeos/química , Infecções por Strongylida/parasitologia , Animais , Feminino , Glicoproteínas/genética , Glicoproteínas/imunologia , Proteínas de Helminto/genética , Proteínas de Helminto/imunologia , Humanos , Intestinos/química , Intestinos/imunologia , Masculino , Metilação , Camundongos , Camundongos Endogâmicos BALB C , Nematospiroides dubius/química , Nematospiroides dubius/genética , Polissacarídeos/genética , Polissacarídeos/imunologia , Infecções por Strongylida/imunologia
3.
Infect Immun ; 84(1): 21-33, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-26459512

RESUMO

Schistosomiasis is a tropical disease affecting over 230 million people worldwide. Although effective drug treatment is available, reinfections are common, and development of immunity is slow. Most antibodies raised during schistosome infection are directed against glycans, some of which are thought to be protective. Developing schistosomula are considered most vulnerable to immune attack, and better understanding of local antibody responses raised against glycans expressed by this life stage might reveal possible glycan vaccine candidates for future vaccine research. We used antibody-secreting cell (ASC) probes to characterize local antiglycan antibody responses against migrating Schistosoma japonicum schistosomula in different tissues of rats. Analysis by shotgun Schistosoma glycan microarray resulted in the identification of antiglycan antibody response patterns that reflected the migratory pathway of schistosomula. Antibodies raised by skin lymph node (LN) ASC probes mainly targeted N-glycans with terminal mannose residues, Galß1-4GlcNAc (LacNAc) and Galß1-4(Fucα1-3)GlcNAc (LeX). Also, responses to antigenic and schistosome-specific glycosphingolipid (GSL) glycans containing highly fucosylated GalNAcß1-4(GlcNAcß1)n stretches that are believed to be present at the parasite's surface constitutively upon transformation were found. Antibody targets recognized by lung LN ASC probes were mainly N-glycans presenting GalNAcß1-4GlcNAc (LDN) and GlcNAc motifs. Surprisingly, antibodies against highly antigenic multifucosylated motifs of GSL glycans were not observed in lung LN ASC probes, indicating that these antigens are not expressed in lung stage schistosomula or are not appropriately exposed to induce immune responses locally. The local antiglycan responses observed in this study highlight the stage- and tissue-specific expression of antigenic parasite glycans and provide insights into glycan targets possibly involved in resistance to S. japonicum infection.


Assuntos
Antígenos de Helmintos/imunologia , Polissacarídeos/imunologia , Schistosoma japonicum/imunologia , Esquistossomose Japônica/imunologia , Pele/imunologia , Animais , Anticorpos Anti-Helmínticos/imunologia , Células Produtoras de Anticorpos/imunologia , Feminino , Glicoesfingolipídeos/imunologia , Linfonodos/imunologia , Ratos , Ratos Wistar , Esquistossomose Japônica/parasitologia , Esquistossomose Japônica/patologia , Pele/parasitologia
4.
Glycobiology ; 25(12): 1465-79, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26347524

RESUMO

During the complex lifecycle of Schistosoma mansoni, a large variety of glycans is expressed. To many of these glycans, antibodies are induced by the infected host and some might be targets for vaccines or diagnostic tests. Spatial changes in glycan expression during schistosome development are largely unexplored. To study the surface-exposed glycans during the important initial stages of infection, we analyzed the binding of a panel of anti-glycan monoclonal antibodies (mAbs) to cercariae and schistosomula up to 72 h after transformation by immunofluorescence microscopy. The mAb specificity toward their natural targets was studied using a microarray containing a wide range of schistosomal N-glycans, O-glycans and glycosphingolipid glycans. With the exception of GalNAcß1-4(Fucα1-3)GlcNAc (LDN-F), mono- and multifucosylated GalNAcß1-4GlcNAc (LDN)-motifs were exposed at the surface of all developmental stages studied. Multifucosylated LDN-motifs were present on cercarial glycocalyx-derived O-glycans as well as cercarial glycolipids. In contrast, the Galß1-4(Fucα1-3)GlcNAc (Lewis X) and LDN-F-motifs, also expressed on cercarial glycolipids, and in addition on a range of cercarial N- and O-glycans, became surface expressed only after transformation of cercariae to schistosomula. In line with the documented shedding of the O-glycan-rich cercarial glycocalyx after transformation these observations suggest that surface accessible multifucosylated LDN-motifs are mostly expressed by O-glycans in cercariae, but principally by glycosphingolipids in schistosomula. We hypothesize that these temporal changes in surface exposure of glycan antigens are relevant to the interaction with the host during the initial stages of infection with schistosomes and discuss the potential of these glycan antigens as intervention targets.


Assuntos
Cercárias/imunologia , Glicocálix/imunologia , Polissacarídeos/imunologia , Schistosoma mansoni/imunologia , Animais , Anticorpos Anti-Helmínticos/imunologia , Anticorpos Monoclonais/imunologia , Schistosoma mansoni/crescimento & desenvolvimento
5.
Mol Cell Proteomics ; 14(7): 1750-69, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25883177

RESUMO

Glycans present on glycoproteins and glycolipids of the major human parasite Schistosoma mansoni induce innate as well as adaptive immune responses in the host. To be able to study the molecular characteristics of schistosome infections it is therefore required to determine the expression profiles of glycans and antigenic glycan-motifs during a range of critical stages of the complex schistosome lifecycle. We performed a longitudinal profiling study covering schistosome glycosylation throughout worm- and egg-development using a mass spectrometry-based glycomics approach. Our study revealed that during worm development N-glycans with Galß1-4(Fucα1-3)GlcNAc (LeX) and core-xylose motifs were rapidly lost after cercariae to schistosomula transformation, whereas GalNAcß1-4GlcNAc (LDN)-motifs gradually became abundant and predominated in adult worms. LeX-motifs were present on glycolipids up to 2 weeks of schistosomula development, whereas glycolipids with mono- and multifucosylated LDN-motifs remained present up to the adult worm stage. In contrast, expression of complex O-glycans diminished to undetectable levels within days after transformation. During egg development, a rich diversity of N-glycans with fucosylated motifs was expressed, but with α3-core fucose and a high degree of multifucosylated antennae only in mature eggs and miracidia. N-glycan antennae were exclusively LDN-based in miracidia. O-glycans in the mature eggs were also diverse and contained LeX- and multifucosylated LDN, but none of these were associated with miracidia in which we detected only the Galß1-3(Galß1-6)GalNAc core glycan. Immature eggs also exhibited short O-glycan core structures only, suggesting that complex fucosylated O-glycans of schistosome eggs are derived primarily from glycoproteins produced by the subshell envelope in the developed egg. Lipid glycans with multifucosylated GlcNAc repeats were present throughout egg development, but with the longer highly fucosylated stretches enriched in mature eggs and miracidia. This global analysis of the developing schistosome's glycome provides new insights into how stage-specifically expressed glycans may contribute to different aspects of schistosome-host interactions.


Assuntos
Antígenos de Protozoários/metabolismo , Glicômica/métodos , Estágios do Ciclo de Vida , Parasitos/metabolismo , Polissacarídeos/metabolismo , Schistosoma mansoni/crescimento & desenvolvimento , Schistosoma mansoni/metabolismo , Animais , Epitopos/metabolismo , Glicoproteínas/química , Glicoproteínas/metabolismo , Glicosilação , Humanos , Lipídeos/química , Óvulo/metabolismo , Parasitos/crescimento & desenvolvimento , Polissacarídeos/química , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
6.
PLoS Negl Trop Dis ; 6(11): e1922, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23209862

RESUMO

BACKGROUND: Schistosomiasis (bilharzia) is a chronic and potentially deadly parasitic disease that affects millions of people in (sub)tropical areas. An important partial immunity to Schistosoma infections does develop in disease endemic areas, but this takes many years of exposure and maturation of the immune system. Therefore, children are far more susceptible to re-infection after treatment than older children and adults. This age-dependent immunity or susceptibility to re-infection has been shown to be associated with specific antibody and T cell responses. Many antibodies generated during Schistosoma infection are directed against the numerous glycans expressed by Schistosoma. The nature of glycan epitopes recognized by antibodies in natural schistosomiasis infection serum is largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: The binding of serum antibodies to glycans can be analyzed efficiently and quantitatively using glycan microarray approaches. Very small amounts of a large number of glycans are presented on a solid surface allowing binding properties of various glycan binding proteins to be tested. We have generated a so-called shotgun glycan microarray containing natural N-glycan and lipid-glycan fractions derived from 4 different life stages of S. mansoni and applied this array to the analysis of IgG and IgM antibodies in sera from children and adults living in an endemic area. This resulted in the identification of differential glycan recognition profiles characteristic for the two different age groups, possibly reflecting differences in age or differences in length of exposure or infection. CONCLUSIONS/SIGNIFICANCE: Using the shotgun glycan microarray approach to study antibody response profiles against schistosome-derived glycan elements, we have defined groups of infected individuals as well as glycan element clusters to which antibody responses are directed in S. mansoni infections. These findings are significant for further exploration of Schistosoma glycan antigens in relation to immunity.


Assuntos
Anticorpos Anti-Helmínticos/sangue , Antígenos de Helmintos/imunologia , Polissacarídeos/imunologia , Schistosoma mansoni/imunologia , Esquistossomose mansoni/imunologia , Adulto , Fatores Etários , Animais , Criança , Pré-Escolar , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Masculino , Análise em Microsséries , Pessoa de Meia-Idade , Adulto Jovem
7.
J Virol ; 86(21): 11735-44, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22915811

RESUMO

Recombinant soluble trimeric influenza A virus (IAV) hemagglutinin (sHA(3)) has proven an effective vaccine antigen against IAV. Here, we investigate to what extent the glycosylation status of the sHA(3) glycoprotein affects its immunogenicity. Different glycosylation forms of subtype H5 trimeric HA protein (sH5(3)) were produced by expression in insect cells and different mammalian cells in the absence and presence of inhibitors of N-glycan-modifying enzymes or by enzymatic removal of the oligosaccharides. The following sH5(3) preparations were evaluated: (i) HA proteins carrying complex glycans produced in HEK293T cells; (ii) HA proteins carrying Man(9)GlcNAc(2) moieties, expressed in HEK293T cells treated with kifunensine; (iii) HA proteins containing Man(5)GlcNAc(2) moieties derived from HEK293S GnTI(-) cells; (iv) insect cell-produced HA proteins carrying paucimannosidic N-glycans; and (v) HEK293S GnTI(-) cell-produced HA proteins treated with endoglycosidase H, thus carrying side chains composed of only a single N-acetylglucosamine each. The different HA glycosylation states were confirmed by comparative electrophoretic analysis and by mass spectrometric analysis of released glycans. The immunogenicity of the HA preparations was studied in chickens and mice. The results demonstrate that HA proteins carrying terminal mannose moieties induce significantly lower hemagglutination inhibition antibody titers than HA proteins carrying complex glycans or single N-acetylglucosamine side chains. However, the glycosylation state of the HA proteins did not affect the breadth of the antibody response as measured by an HA1 antigen microarray. We conclude that the glycosylation state of recombinant antigens is a factor of significant importance when developing glycoprotein-based vaccines, such as recombinant HA proteins.


Assuntos
Hemaglutininas/química , Hemaglutininas/imunologia , Vírus da Influenza A/imunologia , Polissacarídeos/análise , Animais , Anticorpos Antivirais/sangue , Linhagem Celular , Galinhas , Eletroforese , Feminino , Testes de Inibição da Hemaglutinação , Humanos , Insetos , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia
8.
Parasitology ; 139(9): 1219-30, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22423613

RESUMO

Schistosome infections in humans are characterized by the development of chronic disease and high re-infection rates after treatment due to the slow development of immunity. It appears that anti-schistosome antibodies are at least partially mediating protective mechanisms. Efforts to develop a vaccine based on immunization with surface-exposed or secreted larval or worm proteins are ongoing. Schistosomes also express a large number of glycans as part of their glycoprotein and glycolipid repertoire, and antibody responses to those glycans are mounted by the infected host. This observation raises the question if glycans might also form novel vaccine targets for immune intervention in schistosomiasis. This review summarizes current knowledge of antibody responses and immunity in experimental and natural infections with Schistosoma, the expression profiles of schistosome glycans (the glycome), and antibody responses to individual antigenic glycan motifs. Future directions to study anti-glycan responses in schistosomiasis in more detail in order to address more precisely the possible role of glycans in antibody-mediated immunity are discussed.


Assuntos
Anticorpos Anti-Helmínticos/imunologia , Antígenos de Helmintos/imunologia , Polissacarídeos/imunologia , Schistosoma/imunologia , Esquistossomose/imunologia , Animais , Anticorpos Anti-Helmínticos/biossíntese , Interações Hospedeiro-Parasita , Humanos , Camundongos , Polissacarídeos/metabolismo , Esquistossomose/parasitologia
9.
Int J Parasitol ; 41(5): 523-32, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21236260

RESUMO

In schistosomiasis, the majority of symptoms of the disease is caused by the eggs that are trapped in the liver. These eggs elicit an immune reaction that leads to the formation of granulomas. The eggshell, which is a rigid insoluble structure built from cross-linked proteins, is the site of direct interaction between the egg and the immune system. However, the exact protein composition of the insoluble eggshell was previously unknown. To identify the proteins of the eggshell of Schistosoma mansoni we performed LC-MS/MS analysis, immunostaining and amino acid analysis on eggshell fragments. For this, eggshell protein skeleton was prepared by thoroughly cleaning eggshells in a four-step stripping procedure of increasing strength including urea and SDS to remove all material that is not covalently linked to the eggshell itself, but is part of the inside of the egg, such as Reynold's layer, von Lichtenberg's envelope and the miracidium. We identified 45 proteins of which the majority are non-structural proteins and non-specific for eggs, but are house-keeping proteins that are present in large quantities in worms and miracidia. Some of these proteins are known to be immunogenic, such as HSP70, GST and enolase. In addition, a number of schistosome-specific proteins with unknown function and no homology to any known annotated protein were found to be incorporated in the eggshell. Schistosome-specific glycoconjugates were also shown to be present on the eggshell protein skeleton. This study also confirmed that the putative eggshell protein p14 contributes largely to the eggshell. Together, these results give new insights into eggshell composition as well as eggshell formation. Those proteins that are present at the site and time of eggshell formation are incorporated in the cross-linked eggshell and this cross-linking does no longer occur when the miracidium starts secreting proteins.


Assuntos
Proteínas do Ovo/metabolismo , Proteínas de Helminto/metabolismo , Proteoma/metabolismo , Schistosoma mansoni/metabolismo , Animais , Cricetinae , Proteínas do Ovo/química , Proteínas do Ovo/genética , Proteínas de Helminto/química , Proteínas de Helminto/genética , Dados de Sequência Molecular , Óvulo/química , Óvulo/metabolismo , Proteoma/química , Proteoma/genética , Schistosoma mansoni/química , Schistosoma mansoni/genética , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...