Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 14(4): e11276, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38638369

RESUMO

Ctenostomes are a group of gymnolaemate bryozoans with an uncalcified chitinous body wall having few external, skeletal characters. Hence, species identification is challenging and their systematics remain poorly understood, even more so when they exhibit an endolithic (boring) lifestyle. Currently, there are four Recent families of endolithic bryozoans that live inside mineralized substrates like mollusk shells. In particular, Penetrantiidae Silén, 1946 has received considerable attention and its systematic affinity to either cheilostomes or ctenostomes has been debated. Species delimitation of penetrantiids remains difficult, owing to a high degree of colonial and zooidal plasticity. Consequently, an additional molecular approach is essential to unravel the systematics of penetrantiids, their phylogenetic placement and their species diversity. We therefore sequenced the mitochondrial (mt) genomes and two nuclear markers of 27 ctenostome species including nine penetrantiids. Our phylogeny supports the Penetrantiidae as a monophyletic group placed as sister taxon to the remaining ctenostomes alongside paludicellids, arachnidioids and terebriporids. The boring family Terebriporidae d'Orbigny, 1847 were previously considered to be among vesicularioids, but our results suggest an arachnidioid affinity instead. Ctenostome paraphyly is supported by our data, as the cheilostomes nest within them. A Multiporata clade is also well supported, including the former victorelloid genus Sundanella. Altogether, this study provides new insights into ctenostome systematics, assists with species delimitation and contributes to our understanding of the bryozoan tree of life.

2.
Org Divers Evol ; 23(4): 743-785, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38046835

RESUMO

An endolithic lifestyle in mineralized substrates has evolved multiple times in various phyla including Bryozoa. The family Penetrantiidae includes one genus with ten extant and two fossil species. They predominantly colonize the shells of molluscs and establish colonies by chemical dissolution of calcium carbonate. Based on several morphological characters, they were described to be either cheilostome or ctenostome bryozoans. For more than 40 years, neither the characters of species identity and systematics nor the problem of their phylogeny was approached. Consequently, the aim of this study is to reevaluate species identities and the systematic position of the genus Penetrantia by analyzing at least six different species from eight regions with the aid of modern methods such as confocal laser scanning microscopy and 3D-reconstruction techniques. This study demonstrates that the musculature associated with the operculum and brood chamber shows significant differences from the cheilostome counterparts and seems to have evolved independently. Together with the presence of other ctenostome-like features such as true polymorphic stolons and uncalcified body wall, this finding supports a ctenostome affinity. Operculum morphology reveals many new species-specific characters, which, together with information about gonozooid morphology, tentacle number, and zooid size ranges, will enhance species identification. It also revealed a probable new species in Japan as well as potential cryptic species in France and New Zealand. In addition, this study increases the known distribution range of the family and its substrate diversity. Altogether, the new information collated here provides the basis for future work on a neglected taxon. Supplementary Information: The online version contains supplementary material available at 10.1007/s13127-023-00612-z.

3.
Proc Biol Sci ; 290(2010): 20231458, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37909081

RESUMO

Parental care is considered crucial for the enhanced survival of offspring and evolutionary success of many metazoan groups. Most bryozoans incubate their young in brood chambers or intracoelomically. Based on the drastic morphological differences in incubation chambers across members of the order Cheilostomatida (class Gymnolaemata), multiple origins of incubation were predicted in this group. This hypothesis was tested by constructing a molecular phylogeny based on mitogenome data and nuclear rRNA genes 18S and 28S with the most complete sampling of taxa with various incubation devices to date. Ancestral character estimation suggested that distinct types of brood chambers evolved at least 10 times in Cheilostomatida. In Eucratea loricata and Aetea spp. brooding evolved unambiguously from a zygote-spawning ancestral state, as it probably did in Tendra zostericola, Neocheilostomata, and 'Carbasea' indivisa. In two further instances, brooders with different incubation chamber types, skeletal and non-skeletal, formed clades (Scruparia spp., Leiosalpinx australis) and (Catenicula corbulifera (Steginoporella spp. (Labioporella spp., Thalamoporella californica))), each also probably evolved from a zygote-spawning ancestral state. The modular nature of bryozoans probably contributed to the evolution of such a diverse array of embryonic incubation chambers, which included complex constructions made of polymorphic heterozooids, and maternal zooidal invaginations and outgrowths.


Assuntos
Briozoários , Invertebrados , Animais , Filogenia , Reprodução/genética
4.
Pediatr Dermatol ; 40(6): 1071-1073, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37740597

RESUMO

A retrospective chart review of 332 pediatric psoriasis patients seen at a single academic institution from 2012 to 2022 was conducted to examine the risk factors associated with palmoplantar psoriasis (PP), a painful and treatment-resistant subtype of plaque psoriasis affecting hands and feet. Black patients have a 6.386-fold increase in the odds of having PP compared to White patients and males have a 2.241-fold increase in the odds of having PP. Black and Hispanic/Latino patients displayed a higher prevalence of nail and palm/sole involvement (p < .0001), whereas White patients exhibited more scalp involvement (p = .04). This study reveals the importance of considering the diagnosis of PP in Black male patients based on its demographic prevalence, which may in turn impact clinical care for these patients.


Assuntos
Negro ou Afro-Americano , Psoríase , Criança , Humanos , Masculino , Psoríase/diagnóstico , Psoríase/etnologia , Estudos Retrospectivos , População Branca
5.
Methods Mol Biol ; 2450: 151-177, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359307

RESUMO

Among marine invertebrates, bryozoans are small, not well known, and complex to identify. Nevertheless, they offer unique opportunities for whole-body generation research, because of their colonial, modular mode of growth. Here, we describe detailed methods for collection of bryozoans from a range of environments, sample preparation and identification, culture and feeding, spawning and breeding, marking colonies for growth studies, and histological preparation.


Assuntos
Briozoários , Animais , Organismos Aquáticos
6.
Sci Adv ; 8(13): eabm7452, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35353568

RESUMO

Phylogenetic relationships and the timing of evolutionary events are essential for understanding evolution on longer time scales. Cheilostome bryozoans are a group of ubiquitous, species-rich, marine colonial organisms with an excellent fossil record but lack phylogenetic relationships inferred from molecular data. We present genome-skimmed data for 395 cheilostomes and combine these with 315 published sequences to infer relationships and the timing of key events among c. 500 cheilostome species. We find that named cheilostome genera and species are phylogenetically coherent, rendering fossil or contemporary specimens readily delimited using only skeletal morphology. Our phylogeny shows that parental care in the form of brooding evolved several times independently but was never lost in cheilostomes. Our fossil calibration, robust to varied assumptions, indicates that the cheilostome lineage and parental care therein could have Paleozoic origins, much older than the first known fossil record of cheilostomes in the Late Jurassic.

7.
J Morphol ; 283(4): 406-427, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35064947

RESUMO

Bryozoans are small colonial coelomates. They can be conceptualised as "origami-like" animals, composed of three complexly folded epithelial layers: epidermis of the zooidal/colonial body wall, gut epithelium and coelothelium. We investigated the general microanatomy and ultrastructure of the hornerid (Cyclostomatatida) body wall and polypide in four taxa, including three species of Hornera and one species belonging to an undescribed genus. We describe epithelia and their associated structures (e.g., ECM, cuticle) across all portions of the hornerid body wall, including the terminal membrane, vestibular wall, atrial sphincter, membranous sac and polypide-skeletal attachments. The classic coelomate body wall composition (epidermis-ECM-coelothelium) is only present in an unmodified form in the tentacle sheath. Deeper within a zooid it is retained exclusively in the attachment zones of the membranous sac: [skeleton]-tendon cell-ECM-coelothelium. A typical invertebrate pattern of epithelial organisation is a single, continuous sheet of polarised cells, connected by belt desmosomes and septate junctions, and resting on a collagenous extracellular matrix. Although previous studies demonstrated that polypide-specific epithelia of Horneridae follow this model, here we show that the body wall may show significant deviations. Cell layers can lose the basement membrane and/or continuity of cell cover and cell contacts. Moreover, in portions of the body wall, the cell layer appears to be missing altogether; the zooidal orifice is covered by a thin naked cuticle largely devoid of underlying cells. Since epithelium is a two-way barrier against entry and loss of materials, it is unclear how hornerids avoid substance loss, while maintaining intracolonial metabolite transport with imperfect, sometimes incomplete, cell layers along large portions of their outer body surface.


Assuntos
Briozoários , Animais , Briozoários/anatomia & histologia , Células Epidérmicas , Epiderme/ultraestrutura , Matriz Extracelular , Tronco
8.
Zootaxa ; 5020(2): 257-287, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34811002

RESUMO

Here we describe a new hornerid, Hornera currieae n. sp. (Bryozoa: Cyclostomatida) from bathyal depths across the New Zealand region. Colonies are irregular, finely branched fans attaining ~40 mm or more in height. Key characters include: (1) thick, semi-hyaline porcellanous skeleton; (2) loss or reduction of nervi (longitudinal striae) away from growing tips; (3) sparse, threadlike cancelli; and (4) small (6187 m), widely spaced autozooidal apertures. Diagnostic hornerid traits possessed by H. currieae n. sp. include vertical ancestrular tube, periancestrular budding of daughter zooids, and skeletal ultrastructure dominated by hexagonal semi-nacre grading to pseudofoliated fabric. The abfrontal incubation chamber develops from a cryptic tube arising from the frontally positioned aperture of the fertile zooid. We used SEM, micro-CT and electron backscatter diffractometry (EBSD) to investigate the ultrastructure and internal architecture of H. currieae n. sp. EBSD reveals that crystalline c-axes of laminated crystallites are perpendicular to skeletal walls. Threadlike cancelli, which traverse secondary calcification, connect autozooidal chambers to the colony-wide hypostegal cavity. Micro-CT reveals that abfrontal cancelli usually bend proximally towards the base, but turn distally towards reproductively active regions of the colony in synchrony with gonozooid development. The zone of affected cancelli extends for 47 branch internodes below the gonozooid. We assessed whether skeletal ultrastructure was similarly affected, but neither cancellus direction, nor gonozooid proximity, were predictive of the crystallite imbrication direction. We hypothesise that (1) hornerid cancelli are active conduits for colonial metabolite transport and (2) that changes in gradients of metabolites and/or reproductive morphogens within the hypostegal cavity affect cancellus morphogenesis. Potentially, H. currieae n. sp. skeletons may preserve a record of intra-colony metabolite translocation dynamics over time.


Assuntos
Anomuros , Briozoários , Animais
9.
Ecol Evol ; 11(1): 309-320, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33437431

RESUMO

Resolution of relationships at lower taxonomic levels is crucial for answering many evolutionary questions, and as such, sufficiently varied species representation is vital. This latter goal is not always achievable with relatively fresh samples. To alleviate the difficulties in procuring rarer taxa, we have seen increasing utilization of historical specimens in building molecular phylogenies using high throughput sequencing. This effort, however, has mainly focused on large-bodied or well-studied groups, with small-bodied and under-studied taxa under-prioritized. Here, we utilize both historical and contemporary specimens, to increase the resolution of phylogenetic relationships among a group of under-studied and small-bodied metazoans, namely, cheilostome bryozoans. In this study, we pioneer the sequencing of air-dried cheilostomes, utilizing a recently developed library preparation method for low DNA input. We evaluate a de novo mitogenome assembly and two iterative methods, using the sequenced target specimen as a reference for mapping, for our sequences. In doing so, we present mitochondrial and ribosomal RNA sequences of 43 cheilostomes representing 37 species, including 14 from historical samples ranging from 50 to 149 years old. The inferred phylogenetic relationships of these samples, analyzed together with publicly available sequence data, are shown in a statistically well-supported 65 taxa and 17 genes cheilostome tree, which is also the most broadly sampled and largest to date. The robust phylogenetic placement of historical samples whose contemporary conspecifics and/or congenerics have been sequenced verifies the appropriateness of our workflow and gives confidence in the phylogenetic placement of those historical samples for which there are no close relatives sequenced. The success of our workflow is highlighted by the circularization of a total of 27 mitogenomes, seven from historical cheilostome samples. Our study highlights the potential of utilizing DNA from micro-invertebrate specimens stored in natural history collections for resolving phylogenetic relationships among species.

10.
Zootaxa ; 4801(2): zootaxa.4801.2.1, 2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-33056656

RESUMO

Collections from relatively deep waters around the New Zealand Exclusive Economic Zone have revealed new species in the cheilostome bryozoan genus Cellaria sensu lato. We describe here seven new species: C. calculosa n. sp., C. curiosa n. sp., C. gracillima n. sp., C. major n. sp., C. spatulifera n. sp., C. stenorhyncha n. sp. and C. macricula n. sp. previously misidentified as C. humilis Moyano, 1983. Four additional species (here called spp. 1, 2, 3, 4) are left in open nomenclature since not enough key taxonomic characteristics were observed to define them as new. Furthermore, some of the newly described species have combinations of taxonomic characters that overlap with those said to characterise Paracellaria and Euginoma. The New Zealand region holds the highest species diversity of Cellaria sensu lato in the world.


Assuntos
Briozoários , Animais
11.
Neurobiol Learn Mem ; 176: 107328, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33075479

RESUMO

Impaired fear extinction, combined with the likelihood of fear relapse after exposure therapy, contributes to the persistence of many trauma-related disorders such as anxiety and post-traumatic stress disorder. Identifying mechanisms to aid fear extinction and reduce relapse could provide novel strategies for augmentation of exposure therapy. Exercise can enhance learning and memory and augment fear extinction of traumatic memories in humans and rodents. One factor that could contribute to enhanced fear extinction following exercise is the mammalian target of rapamycin (mTOR). mTOR is a translation regulator involved in synaptic plasticity and is sensitive to many exercise signals such as monoamines, growth factors, and cellular metabolism. Further, mTOR signaling is increased after chronic exercise in brain regions involved in learning and emotional behavior. Therefore, mTOR is a compelling potential facilitator of the memory-enhancing and overall beneficial effects of exercise on mental health.The goal of the current study is to test the hypothesis that mTOR signaling is necessary for the enhancement of fear extinction produced by acute, voluntary exercise. We observed that intracerebral-ventricular administration of the mTOR inhibitor rapamycin reduced immunoreactivity of phosphorylated S6, a downstream target of mTOR, in brain regions involved in fear extinction and eliminated the enhancement of fear extinction memory produced by acute exercise, without reducing voluntary exercise behavior or altering fear extinction in sedentary rats. These results suggest that mTOR signaling contributes to exercise-augmentation of fear extinction.


Assuntos
Extinção Psicológica/fisiologia , Condicionamento Físico Animal , Serina-Treonina Quinases TOR/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Extinção Psicológica/efeitos dos fármacos , Medo , Masculino , Memória , Ratos Long-Evans , Transdução de Sinais/fisiologia , Sirolimo/administração & dosagem , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/fisiologia
12.
Rapid Commun Mass Spectrom ; 34(20): e8901, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-32681532

RESUMO

RATIONALE: Stable oxygen and carbon isotope ratios are one of the most accurate ways of determining environmental changes in the past, which are used to predict future environmental change. Biogenic carbonates from marine organisms are the most common source of samples for stable isotope analysis. Before they are analyzed by mass spectrometry, any organic material is traditionally removed by one of three common pretreatment methods: roasting, bleaching, or with hydrogen peroxide at various strengths and durations. METHODS: This study compares δ18 O and δ13 C values in a control with no pretreatment with those from five different pretreatment methods using conventional acid digestion mass spectrometry. The objectives are to: assess the impact of the most common pretreatment methods on δ18 O and δ13 C values from (1) taxonomically underrepresented groups in previous studies, and (2) those that precipitate a wide range of biomineralogies, in the debate of whether to pretreat or not to pretreat. We analyzed the following biomineralogically complex temperate marine organisms from southern New Zealand: four species of bryozoans, four species of molluscs, two species of arthropods, and one species each of annelid, red alga, brachiopod, and echinoderm (test plates and spines treated separately). These species precipitate aragonite, High-, Intermediate-, and/or Low-Mg calcite (LMC) in their skeletons. We used linear mixed statistical models to compare the effects of the pretreatments and mineralogical composition on their δ18 O and δ13 C values. RESULTS: Roasting was the most effective pretreatment for the removal of organic matter and light H2 O2 the least, but the former had corresponding impacts on isotope ratios. δ18 O values were not directly affected by wt% MgCO3 , but they were significantly affected by the interaction of roasting and wt% MgCO3 . This same negative effect of roasting on species with higher wt% MgCO3 occurred in δ13 C values, but it was much more pronounced in δ18 O values. Both H2 O2 pretreatments significantly and negatively affected δ18 O values at higher wt% MgCO3 . Neither bleaching pretreatment significantly affected δ18 O values. δ13 C values were most negatively affected in skeletons with high wt% MgCO3 . There was also a strong negative roasting effect and more so at higher wt% MgCO3 . Bleaching and H2 O2 did not significantly affect δ13 C values. CONCLUSIONS: Based on these results, and when using skeletal carbonate of complex mineralogies, we recommend considering the abandonment of pretreatment of biogenic carbonate for stable isotope analysis due to confounded results from previous studies, difficulties with preparation, and/or the absence of significant effects of organic material on isotope ratios. If pretreatment is necessary, avoid roasting especially at higher temperatures and durations, use minimal bleaching, and in general avoid using High-Mg calcite species in O and C stable isotope studies. If bleaching is used, clearly indicate the concentration and duration of exposure.

13.
Biol Rev Camb Philos Soc ; 95(5): 1341-1371, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32558290

RESUMO

Skeletal resorption - the physiological removal of mineralised parts by an organism - is an important morphogenetic process in bryozoans. Reports of its occurrence and function across the phylum are patchy, however, and have not previously been synthesised. Here we show that resorption occurs routinely across a wide range of bryozoan clades, colony sizes, growth forms, ontogenetic stages, body wall types, skeletal ultrastructures and mineralogies. Beginning in the early Paleozoic, different modes and functions of resorption have evolved convergently among disparate groups, highlighting its utility as a morphogenetic mode in this phylum. Its functions include branch renovation, formation of branch articulations, excavation of reproductive chambers, part-shedding, and creation of access portals for budding beyond previously formed skeletal walls. Bryozoan skeletons can be altered by resorption at microscopic, zooidal and colony-wide scales, typically with a fine degree of control and coordination. We classified resorption patterns in bryozoans according to the morphology and function of the resorption zone (window formation, abscission or excavation), timing within the life of the skeletal element resorbed (primary or secondary), and scale of operation (zooidal or multizooidal). Skeletal resorption is probably greatly underestimated in terms of its utility and role in bryozoan life history, and its prevalence across taxa, especially in fossil forms. It is reported proportionally more frequently in stenolaemates than in gymnolaemates. Some modes of resorption potentially alter or remove the spatial-temporal record of calcification preserved within a skeleton. Consequently, knowledge that resorption has occurred can be relevant for some common applications of skeletal analysis, such as palaeoenvironmental interpretation, or growth and ageing studies. To aid recognition we provide scanning electron microscopy, backscattered electron scanning electron microscopy and transmission electron microscopy examples of skeletal ultrastuctures modified by resorption.


Assuntos
Briozoários , Animais , Fósseis
14.
Arch Dermatol Res ; 312(8): 545-558, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32100098

RESUMO

Psychiatric disorders are prevalent in dermatology patients. Psychodermatology is the body of knowledge at the intersection of psychiatry and dermatology practice. The purpose of this literature review was to assess the knowledge, attitudes, and practices of health care professionals regarding psychodermatology. A search of relevant articles was conducted in PubMed, CINAHL, ERIC, and PsychInfo databases using a comprehensive set of search terms. Studies were included if (1) study participants were health care professionals, (2) studies contained data that could be extracted, and (3) studies were published in peer-reviewed journals. A review of study findings was conducted. A total of nine studies were included in the review. Studies were conducted in several countries. Findings from the review confirmed that providers frequently reported psychocutaneous disorders in their practice. There were, however, gaps and variations in providers' knowledge base and level of comfort treating these patients. Further, providers acknowledged a lack of training in the practice of psychodermatology. The findings from this review suggest that health care professionals from multiple areas of the world may lack a full understanding, level of comfort, and proper training in psychodermatology. Improving the knowledge base and increasing level of comfort in treating psychodermatological disorders can improve the practice of psychodermatology amongst providers. Further, addressing knowledge and comfort level among providers through training and continuing education may improve outcomes for patients with psychocutaneous disorders.


Assuntos
Competência Clínica/estatística & dados numéricos , Transtornos Mentais/terapia , Dermatopatias/terapia , Comorbidade , Dermatologia/métodos , Dermatologia/estatística & dados numéricos , Pessoal de Saúde , Humanos , Transtornos Mentais/diagnóstico , Transtornos Mentais/epidemiologia , Transtornos Mentais/psicologia , Prevalência , Psiquiatria/métodos , Psiquiatria/estatística & dados numéricos , Dermatopatias/diagnóstico , Dermatopatias/epidemiologia , Dermatopatias/psicologia
15.
BMC Evol Biol ; 19(1): 235, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31881939

RESUMO

BACKGROUND: Understanding the phylogenetic relationships among species is one of the main goals of systematic biology. Simultaneously, credible phylogenetic hypotheses are often the first requirement for unveiling the evolutionary history of traits and for modelling macroevolutionary processes. However, many non-model taxa have not yet been sequenced to an extent such that statistically well-supported molecular phylogenies can be constructed for these purposes. Here, we use a genome-skimming approach to extract sequence information for 15 mitochondrial and 2 ribosomal operon genes from the cheilostome bryozoan family, Adeonidae, Busk, 1884, whose current systematics is based purely on morphological traits. The members of the Adeonidae are, like all cheilostome bryozoans, benthic, colonial, marine organisms. Adeonids are also geographically widely-distributed, often locally common, and are sometimes important habitat-builders. RESULTS: We successfully genome-skimmed 35 adeonid colonies representing 6 genera (Adeona, Adeonellopsis, Bracebridgia, Adeonella, Laminopora and Cucullipora). We also contributed 16 new, circularised mitochondrial genomes to the eight previously published for cheilostome bryozoans. Using the aforementioned mitochondrial and ribosomal genes, we inferred the relationships among these 35 samples. Contrary to some previous suggestions, the Adeonidae is a robustly supported monophyletic clade. However, the genera Adeonella and Laminopora are in need of revision: Adeonella is polyphyletic and Laminopora paraphyletically forms a clade with some Adeonella species. Additionally, we assign a sequence clustering identity using cox1 barcoding region of 99% at the species and 83% at the genus level. CONCLUSIONS: We provide sequence data, obtained via genome-skimming, that greatly increases the resolution of the phylogenetic relationships within the adeonids. We present a highly-supported topology based on 17 genes and substantially increase availability of circularised cheilostome mitochondrial genomes, and highlight how we can extend our pipeline to other bryozoans.


Assuntos
Briozoários/classificação , Briozoários/genética , Animais , Evolução Biológica , Evolução Molecular , Genoma Mitocondrial , Filogenia , Análise de Sequência de DNA , Óperon de RNAr
16.
PeerJ ; 7: e7670, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31579589

RESUMO

The New Zealand paua or black footed abalone, Haliotis iris, is one of many mollusc species at potential risk from ocean acidification and warming. To investigate possible impacts, juvenile paua (~24 mm shell length) were grown for 4 months in seawater pH/pCO2 conditions projected for 2100. End of century seawater projections (pHT 7.66/pCO2 ~1,000 µatm) were contrasted with local ambient conditions (pHT 8.00/pCO2 ~400 µatm) at two typical temperatures (13 and 15 °C). We used a combination of methods (morphometric, scanning electron microscopy, X-ray diffraction) to investigate effects on juvenile survival and growth, as well as shell mineralogy and integrity. Lowered pH did not affect survival, growth rate or condition, but animals grew significantly faster at the higher temperature. Juvenile paua were able to biomineralise their inner nacreous aragonite layer and their outer prismatic calcite layer under end-of-century pH conditions, at both temperatures, and carbonate composition was not affected. There was some thickening of the nacre layer in the newly deposited shell with reduced pH and also at the higher temperature. Most obvious was post-depositional alteration of the shell under lowered pH: the prismatic calcite layer was thinner, and there was greater etching of the external shell surface; this dissolution was greater at the higher temperature. These results demonstrate the importance of even a small (2 °C) difference in temperature on growth and shell characteristics, and on modifying the effects at lowered pH. Projected CO2-related changes may affect shell quality of this iconic New Zealand mollusc through etching (dissolution) and thinning, with potential implications for resilience to physical stresses such as predation and wave action.

17.
Sci Total Environ ; 672: 938-950, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30981169

RESUMO

The effects of ocean acidification, a major anthropogenic impact on marine life, have been mainly investigated in laboratory/mesocosm experiments. We used the CO2 vents at Ischia as a natural laboratory to study the long-term effects of ocean acidification on the sea urchin Paracentrotus lividus population resident in low-pH (7.8 ±â€¯0.2) compared to that at two control sites (pH 8.02 ±â€¯0.00; 8.02 ±â€¯0.01). The novelty of the present study is the analysis of the sea urchin immune cells, the sentinels of environmental stress responses, by a wide-ranging approach, including cell morphology, biochemistry and proteomics. Immune cell proteomics showed that 311 proteins were differentially expressed in urchins across sites with a general shift towards antioxidant processes in the vent urchins. The vent urchin immune cells showed higher levels of total antioxidant capacity, up-regulation of phagosome and microsomal proteins, enzymes of ammonium metabolism, amino-acid degradation, and modulation of carbon metabolism proteins. Lipid-hydroperoxides and nitric oxide levels were not different in urchins from the different sites. No differences in the coelomic fluid pH, immune cell composition, animal respiration, nitrogen excretion and skeletal mineralogy were observed. Our results reveal the phenotypic plasticity of the immune system of sea urchins adapted to life at vent site, under conditions commensurate with near-future ocean acidification projections.


Assuntos
Adaptação Fisiológica/fisiologia , Dióxido de Carbono/análise , Sistema Imunitário/fisiologia , Ouriços-do-Mar/fisiologia , Poluentes Químicos da Água/análise , Animais , Monitoramento Ambiental , Concentração de Íons de Hidrogênio , Fontes Hidrotermais , Paracentrotus , Água do Mar/química
18.
PLoS One ; 13(6): e0197533, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29897916

RESUMO

This paper describes the skeletal carbonate mineralogy of 156 bryozoan species collected from Scotland (sourced both from museum collections and from waters around Scotland) and collated from literature. This collection represents 79% of the species which inhabit Scottish waters and is a greater number and proportion of extant species than any previous regional study. The study is also of significance globally where the data augment the growing database of mineralogical analyses and offers first analyses for 26 genera and four families. Specimens were collated through a combination of field sampling and existing collections and were analysed by X-ray diffraction (XRD) and micro-XRD to determine wt% MgCO3 in calcite and wt% aragonite. Species distribution data and phylogenetic organisation were applied to understand distributional, taxonomic and phylo-mineralogical patterns. Analysis of the skeletal composition of Scottish bryozoans shows that the group is statistically different from neighbouring Arctic fauna but features a range of mineralogy comparable to other temperate regions. As has been previously reported, cyclostomes feature low Mg in calcite and very little aragonite, whereas cheilostomes show much more variability, including bimineralic species. Scotland is a highly variable region, open to biological and environmental influx from all directions, and bryozoans exhibit this in the wide range of within-species mineralogical variability they present. This plasticity in skeletal composition may be driven by a combination of environmentally-induced phenotypic variation, or physiological factors. A flexible response to environment, as manifested in a wide range of skeletal mineralogy within a species, may be one characteristic of successful invasive bryozoans.


Assuntos
Briozoários/química , Carbonatos/química , Minerais/química , Animais , Carbonato de Cálcio/química , Magnésio/química , Filogenia , Escócia , Água do Mar , Difração de Raios X
19.
PLoS One ; 10(10): e0140394, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26469945

RESUMO

Coralline algae are susceptible to the changes in the seawater carbonate system associated with ocean acidification (OA). However, the coastal environments in which corallines grow are subject to large daily pH fluctuations which may affect their responses to OA. Here, we followed the growth and development of the juvenile coralline alga Arthrocardia corymbosa, which had recruited into experimental conditions during a prior experiment, using a novel OA laboratory culture system to simulate the pH fluctuations observed within a kelp forest. Microscopic life history stages are considered more susceptible to environmental stress than adult stages; we compared the responses of newly recruited A. corymbosa to static and fluctuating seawater pH with those of their field-collected parents. Recruits were cultivated for 16 weeks under static pH 8.05 and 7.65, representing ambient and 4× preindustrial pCO2 concentrations, respectively, and two fluctuating pH treatments of daily [Formula: see text] (daytime pH = 8.45, night-time pH = 7.65) and daily [Formula: see text] (daytime pH = 8.05, night-time pH = 7.25). Positive growth rates of new recruits were recorded in all treatments, and were highest under static pH 8.05 and lowest under fluctuating pH 7.65. This pattern was similar to the adults' response, except that adults had zero growth under fluctuating pH 7.65. The % dry weight of MgCO3 in calcite of the juveniles was reduced from 10% at pH 8.05 to 8% at pH 7.65, but there was no effect of pH fluctuation. A wide range of fleshy macroalgae and at least 6 species of benthic diatoms recruited across all experimental treatments, from cryptic spores associated with the adult A. corymbosa. There was no effect of experimental treatment on the growth of the benthic diatoms. On the community level, pH-sensitive species may survive lower pH in the presence of diatoms and fleshy macroalgae, whose high metabolic activity may raise the pH of the local microhabitat.


Assuntos
Ciclo do Carbono , Oceanos e Mares , Phaeophyceae/crescimento & desenvolvimento , Fitoplâncton/crescimento & desenvolvimento , Diatomáceas/crescimento & desenvolvimento , Diatomáceas/metabolismo , Concentração de Íons de Hidrogênio , Phaeophyceae/metabolismo , Fitoplâncton/metabolismo
20.
Environ Sci Technol ; 48(21): 12620-7, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25252045

RESUMO

We examined the long-term effects of near-future changes in temperature and acidification on skeletal mineralogy, thickness, and strength in the sea urchin Tripneustes gratilla reared in all combinations of three pH (pH 8.1, 7.8, 7.6) and three temperatures (22 °C, 25 °C, 28 °C) from the early juvenile to adult, over 146 days. As the high-magnesium calcite of the echinoderm skeleton is a biomineral form highly sensitive to acidification, and influenced by temperature, we documented the MgCO3 content of the spines, test plates, and teeth. The percentage of MgCO3 varied systematically, with more Mg2+ in the test and spines. The percentage of MgCO3 in the test and teeth, but not the spines increased with temperature. Acidification did not change the percentage MgCO3. Test thickness increased with warming and decreased at pH 7.6, with no interaction between these factors. In crushing tests live urchins mostly ruptured at sutures between the plates. The force required to crush a live urchin was reduced in animals reared in low pH conditions but increased in those reared in warm conditions, a result driven by differences in urchin size. It appears that the interactive effects of warming and acidification on the Mg2+ content and protective function of the sea urchin skeleton will play out in a complex way as global climatic change unfolds.


Assuntos
Magnésio/análise , Ouriços-do-Mar/química , Animais , Calcificação Fisiológica , Mudança Climática , Concentração de Íons de Hidrogênio , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...