Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(4)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38391964

RESUMO

Osteosarcoma (OS) is a primary bone malignancy characterized by an aggressive nature, limited treatment options, low survival rate, and poor patient prognosis. Conditionally replicative adenoviruses (CRAds) armed with immune checkpoint inhibitors hold great potential for enhanced therapeutic efficacy. The present study aims to investigate the anti-tumor efficacy of CAV2-AU-M2, a CAV2-based CRAd armed with an anti-PD-1 single-domain antibody (sdAb), against OS cell lines in vitro. The infection, conditional replication, cytopathic effects, and cytotoxicity of CAV2-AU-M2 were tested in four different OS cell lines in two-dimensional (2D) and three-dimensional (3D) cell cultures. CAV2-AU-M2 showed selective replication in the OS cells and induced efficient tumor cell lysis and death. Moreover, CAV2-AU-M2 produced an anti-PD-1 sdAb that demonstrated effective binding to the PD-1 receptors. This study demonstrated the first CRAd armed with an anti-PD-1 sdAb. This combined approach of two distinct immunotherapies is intended to enhance the anti-tumor immune response in the tumor microenvironment.


Assuntos
Neoplasias Ósseas , Terapia Viral Oncolítica , Vírus Oncolíticos , Osteossarcoma , Anticorpos de Domínio Único , Humanos , Terapia Viral Oncolítica/métodos , Osteossarcoma/terapia , Neoplasias Ósseas/terapia , Microambiente Tumoral
2.
Front Vet Sci ; 11: 1327377, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38420207

RESUMO

Introduction: Osteosarcoma (OSA) is an aggressive form of bone cancer in both dogs and humans. The treatment options for metastatic (stage III) OSA are currently limited and the prognosis is poor. Zoledronate, a second generation amino-bisphosphonate, is commonly used for palliation of cancer induced bone pain. Zoledronate has also demonstrated anti-cancer properties and possibly enhances the cytotoxicity of doxorubicin in a canine histiocytosis cell line and human prostatic cancer cell line. The goal of this study was to evaluate the combination effect of zoledronate and various chemotherapeutic drugs in canine OSA cells. Methods: Canine OSA cell line (D17), cells from two canine primary OSAs, and MDCK, a canine kidney cell line, were used to evaluate the therapeutic potential of these drugs. Carboplatin, doxorubicin, vinorelbine, toceranib, and isophosphoramide mustard (active metabolite of ifosfamide) were used as chemotherapeutic agents. First, cells were treated with either zoledronate or chemotherapy drug alone for 72 hours. Cell viability was assessed using CellTiter Glo and IC5, IC10, IC20, and IC50 were calculated. Second, cells were treated with a combination of zoledronate and each chemotherapeutic agent at their IC5, IC10, IC20, and IC50 concentrations. After 72 hours, cell viability was assessed by CellTiter Glo. Results and discussion: Zoledronate, carboplatin, doxorubicin, vinorelbine, and isophosphoramide mustard showed concentration dependent decrease in cell viability. Toceranib showed decreased cell viability only at higher concentrations. When zoledronate was used in combination with chemotherapy drugs, while it showed potential synergistic effects with toceranib, potential antagonistic effects with vinorelbine and isophosphoramide mustard were observed. However, the results differed by cell line and thus, further evaluation is warranted to understand the exact mechanism of action.

3.
Int J Mol Sci ; 24(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38003552

RESUMO

Osteosarcoma (OSA) is a highly aggressive bone tumor primarily affecting pediatric or adolescent humans and large-breed dogs. Canine OSA shares striking similarities with its human counterpart, making it an invaluable translational model for uncovering the disease's complexities and developing novel therapeutic strategies. Tumor heterogeneity, a hallmark of OSA, poses significant challenges to effective treatment due to the evolution of diverse cell populations that influence tumor growth, metastasis, and resistance to therapies. In this study, we apply single-nuclei multiome sequencing, encompassing ATAC (Assay for Transposase-Accessible Chromatin) and GEX (Gene Expression, or RNA) sequencing, to a treatment-naïve primary canine osteosarcoma. This comprehensive approach reveals the complexity of the tumor microenvironment by simultaneously capturing the transcriptomic and epigenomic profiles within the same nucleus. Furthermore, these results are analyzed in conjunction with bulk RNA sequencing and differential analysis of the same tumor and patient-matched normal bone. By delving into the intricacies of OSA at this unprecedented level of detail, we aim to unravel the underlying mechanisms driving intra-tumoral heterogeneity, opening new avenues for therapeutic interventions in both human and canine patients. This study pioneers an approach that is broadly applicable, while demonstrating significant heterogeneity in the context of a single individual's tumor.


Assuntos
Neoplasias Ósseas , Doenças do Cão , Osteossarcoma , Animais , Cães , Neoplasias Ósseas/genética , Neoplasias Ósseas/veterinária , Neoplasias Ósseas/tratamento farmacológico , Doenças do Cão/metabolismo , Expressão Gênica , Osteossarcoma/genética , Osteossarcoma/veterinária , Osteossarcoma/metabolismo , RNA , Microambiente Tumoral/genética
4.
Genes (Basel) ; 14(7)2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37510280

RESUMO

MicroRNAs (miRNAs) are single-stranded, non-coding RNA molecules that regulate gene expression post-transcriptionally by binding to messenger RNAs. miRNAs are important regulators of gene expression, and their dysregulation is implicated in many human and canine diseases. Most cancers tested to date have been shown to express altered miRNA levels, which indicates their potential importance in the oncogenic process. Based on this evidence, numerous miRNAs have been suggested as potential cancer biomarkers for both diagnosis and prognosis. miRNA-based therapies have also been tested in different cancers and have provided measurable clinical benefits to patients. In addition, understanding miRNA biogenesis and regulatory mechanisms in cancer can provide important knowledge about resistance to chemotherapies, leading to more personalized cancer treatment. In this review, we comprehensively summarized the importance of miRNA in human and canine cancer research. We discussed the current state of development and potential for the miRNA as both a diagnostic marker and a therapeutic target.


Assuntos
MicroRNAs , Neoplasias , Humanos , Animais , Cães , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Neoplasias/genética , Prognóstico , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica
5.
iScience ; 25(10): 105158, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36217551

RESUMO

Recent breakthroughs in cancer immunotherapy have provided unprecedented clinical benefits to human cancer patients. Cancer is also one of the most common causes of death in pet dogs. Thus, canine-specific immune therapies targeting similar signaling pathways can provide better treatment options for canine cancer patients. Here, we describe the development and characterization of two canine-specific anti-OX40 agonists to activate OX40 signaling. We show that canine OX40, like human OX40, is not expressed on resting T cells, and its expression is markedly increased on canine CD4 T cells and Tregs after stimulation with concanavalin A (Con-A). cOX40 is also expressed on tumor-infiltrating lymphocytes (TILs) in canine osteosarcoma patients. The canine-specific OX40 agonists strongly activates cPBMCs by increasing IFN-γ expression and do not require Fc receptor-mediated cross-linking for OX40 agonism. Together, these results suggest that cFcOX40L proteins are potent OX40 agonists and have the potential to enhance antitumor immunity in canine cancer patients.

6.
Prog Mol Biol Transl Sci ; 189(1): 67-99, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35595353

RESUMO

Dogs are remarkable, adaptable, and dependable creatures that have evolved alongside humans while contributing tremendously to our survival. Our canine companions share many similarities to human disease, particularly cancer. With the advancement of next-generation sequencing technology, we are beginning to unravel the complexity of cancer and the vast intra- and intertumoral heterogeneity that makes treatment difficult. Consequently, precision medicine has emerged as a therapeutic approach to improve patient survival by evaluating and classifying an individual tumor's molecular profile. Many canine and human cancers share striking similarities in terms of genotypic, phenotypic, clinical, and histological presentations. Dogs are superior to rodent models of cancer because they are a naturally heterogeneous population in which tumors occur spontaneously, are exposed to similar environmental conditions, and show more similarities in key modulators of tumorigenesis and clinical response, including the immune system, drug metabolism, and gut microbiome. In this chapter, we will explore various canine models of human cancers and emphasize the dog's critical role in advancing precision medicine and improving the survival of both man and man's best friend.


Assuntos
Doenças do Cão , Neoplasias , Animais , Carcinogênese , Doenças do Cão/tratamento farmacológico , Cães , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias/terapia , Medicina de Precisão
7.
Genes (Basel) ; 13(4)2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35456486

RESUMO

Despite significant advances in cancer diagnosis and treatment, osteosarcoma (OSA), an aggressive primary bone tumor, has eluded attempts at improving patient survival for many decades. The difficulty in managing OSA lies in its extreme genetic complexity, drug resistance, and heterogeneity, making it improbable that a single-target treatment would be beneficial for the majority of affected individuals. Precision medicine seeks to fill this gap by addressing the intra- and inter-tumoral heterogeneity to improve patient outcome and survival. The characterization of differentially expressed genes (DEGs) unique to the tumor provides insight into the phenotype and can be useful for informing appropriate therapies as well as the development of novel treatments. Traditional DEG analysis combines patient data to derive statistically inferred genes that are dysregulated in the group; however, the results from this approach are not necessarily consistent across individual patients, thus contradicting the basis of precision medicine. Spontaneously occurring OSA in the dog shares remarkably similar clinical, histological, and molecular characteristics to the human disease and therefore serves as an excellent model. In this study, we use transcriptomic sequencing of RNA isolated from primary OSA tumor and patient-matched normal bone from seven dogs prior to chemotherapy to identify DEGs in the group. We then evaluate the universality of these changes in transcript levels across patients to identify DEGs at the individual level. These results can be useful for reframing our perspective of transcriptomic analysis from a precision medicine perspective by identifying variations in DEGs among individuals.


Assuntos
Neoplasias Ósseas , Doenças do Cão , Osteossarcoma , Animais , Cães , Humanos , Neoplasias Ósseas/diagnóstico , Neoplasias Ósseas/genética , Neoplasias Ósseas/veterinária , Doenças do Cão/genética , Osteossarcoma/genética , Osteossarcoma/veterinária , Medicina de Precisão , Transcriptoma/genética
8.
Adv Virol ; 2022: 3658970, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36591003

RESUMO

Canine adenovirus type 2 (CAV2) is a nonhuman adenovirus with a known ability to infect human and canine cells. The cell surface receptors involved in CAV2 transduction are still unknown. Identification of these would provide valuable information to develop enhanced gene delivery tools and better understand CAV2 biology. CAV2 is erroneously grouped with Ad5 based on the knowledge that CAV2 may transduce using CAR. Therefore, we have evaluated CAV2 and Ad5 (CAV2GFP, Ad5G/L) infection patterns in various canine and human cell lines to determine their different tropisms. Our research demonstrates that CAV2 can successfully infect cells that Ad5 does not infect, and CAV2 infections do not correlate with CAR expression. CAV2 can infect cells that have a low or minimal expression of CAR. Our data suggest that CAV2 transduction is not dependent on the CAR receptor, and thus, it is crucial to find novel CAV2 receptors.

9.
Nat Commun ; 12(1): 6769, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34819506

RESUMO

Adeno-associated virus (AAV)-mediated CRISPR-Cas9 editing holds promise to treat many diseases. The immune response to bacterial-derived Cas9 has been speculated as a hurdle for AAV-CRISPR therapy. However, immunological consequences of AAV-mediated Cas9 expression have thus far not been thoroughly investigated in large mammals. We evaluate Cas9-specific immune responses in canine models of Duchenne muscular dystrophy (DMD) following intramuscular and intravenous AAV-CRISPR therapy. Treatment results initially in robust dystrophin restoration in affected dogs but also induces muscle inflammation, and Cas9-specific humoral and cytotoxic T-lymphocyte (CTL) responses that are not prevented by the muscle-specific promoter and transient prednisolone immune suppression. In normal dogs, AAV-mediated Cas9 expression induces similar, though milder, immune responses. In contrast, other therapeutic (micro-dystrophin and SERCA2a) and reporter (alkaline phosphatase, AP) vectors result in persistent expression without inducing muscle inflammation. Our results suggest Cas9 immunity may represent a critical barrier for AAV-CRISPR therapy in large mammals.


Assuntos
Sistemas CRISPR-Cas/imunologia , Terapia Genética/efeitos adversos , Vetores Genéticos/imunologia , Músculo Esquelético/imunologia , Distrofia Muscular de Duchenne/terapia , Animais , Sistemas CRISPR-Cas/genética , Dependovirus/genética , Modelos Animais de Doenças , Cães , Distrofina/genética , Distrofina/imunologia , Edição de Genes/métodos , Genes Reporter/genética , Genes Reporter/imunologia , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Humanos , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/imunologia , Distrofia Muscular de Duchenne/patologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/imunologia
10.
Sci Rep ; 11(1): 20763, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34675296

RESUMO

Cancer is the leading cause of death in the geriatric dog population. Currently, the use of immune checkpoint inhibitors (ICIs) such as anti-CTLA4 antibodies has markedly improved the prognosis of several cancers in their advanced stages. However, ICIs targeting CTLA4 blockade to treat canine cancer patients are yet to define. In this study, we sought to develop, characterize and assess whether chimeric heavy chain only antibodies (cHcAbs) against CTLA4 are viable therapeutic candidates for the treatment of canine cancers. Anti-CTLA4 nanobodies (Nbs) were identified from a yeast nanobody (Nb) library using magnetic-assisted cell sorting (MACS) and flow cytometry. cHcAbs were engineered by genetically fusing the DNA sequences coding for anti-CTLA4 Nbs with the Fc domain of the subclass B of canine IgG. Recombinant cHcAbs were purified from ExpiCHO-S cells. Stable cell lines expressing canine CTLA4 and FcγRI were used to elucidate the binding ability and specificity of cHcAbs. PBMCs isolated from healthy dogs were used to evaluate the ability of cHcAbs to activate canine PBMCs (cPBMCs). Novel Nbs were identified using the extracellular domain of canine CTLA4 protein to screen a fully synthetic yeast nanobody library. Purified Nbs bind specifically to natïve canine CTLA4. We report that chimeric HcAbs, which were engineered by fusing the anti-CTLA4 Nbs and Fc region of subclass B of canine IgG, were half the size of a conventional mAb and formed dimers. The chimeric HcAbs specifically binds both with canine CTLA4 and Fcγ receptors. As the binding of Nbs overlapped with the MYPPPY motif of canine CTLA4, these Nbs were expected to sterically disrupt the interaction of canine CTLA4 to B-7s. Like their human counterpart, canine CTLA4 was expressed on helper T cells and a small subset of cytotoxic T cells. Canine Tregs also constitutively expressed CTLA4, and stimulation with PMA/Ionomycin dramatically increased expression of CTLA4 on the cell surface. Stimulation of cPBMCs in the presence of agonistic anti-CD3 Ab and cHcAb6 significantly increased the expression of IFN-γ as compared to the isotype control. This study identifies a novel nanobody-based CTLA4 inhibitor for the treatment of canine cancer patients.


Assuntos
Antígeno CTLA-4/antagonistas & inibidores , Doenças do Cão/tratamento farmacológico , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias/veterinária , Anticorpos de Domínio Único/uso terapêutico , Animais , Cães , Neoplasias/tratamento farmacológico
11.
Lab Invest ; 101(12): 1627-1636, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34417549

RESUMO

Genetically modified oncolytic adenoviruses have been proposed as a vehicle for cancer therapy. However, several concerns, such as toxicity to normal cells and organs, lack of suitable cell surface receptors to allow viral entry to the desired cell type(s), and activation of both innate and adaptive immune systems in patients, restrict the successful clinical application of adenoviral-mediated cancer gene therapy. Successful virotherapy will require efficient transductional and transcriptional targeting to enhance therapeutic efficacy by ensuring targeted adenoviral infection, replication, and/or therapeutic transgene expression. Targeted modification of viral components, such as viral capsid, fiber knob, and the insertion of transgenes for expression, are prerequisites for the necessary transductional and transcriptional targeting of adenovirus. However, the conventional approach to modify the adenoviral genome is complex, time consuming, and expensive. It is dependent on the presence of unique restriction enzyme sites that may or may not be present in the target location. Clustered regularly interspaced short palindromic repeat (CRISPR) along with the RNA-guided nuclease Cas9 (CRISPR/Cas9) is one of the most powerful tools that has been adopted for precise genome editing in a variety of cells and organisms. However, the ability of the CRISPR/Cas9 system to precisely and efficiently make genetic modification, as well as introduce gene replacements, in adenoviral genomes, remains essentially unknown. Herein the ability of in vitro CRISPR/CAS9-mediated editing of the canine adenovirus type 2 (CAV2) genome to promote targeted modification of the viral genome was assessed. To demonstrate the feasibility of this goal, CRISPR/Cas9 has been used to successfully insert the RFP (red fluorescent protein) reporter construct into the CAV2 genome. Initial results demonstrated high efficiency and accuracy for in vitro CRISPR-mediated editing of the large CAV2 genome. Furthermore, this application was expanded, using multiple guide RNAs, to conduct gene replacement in the CAV2 genome by substituting a portion of the E3 gene with a construct designed to express a single chain antibody to canine PD-1. Thus, this work provides a significantly improved and efficient method for targeted editing of adenoviruses to generate altered and potentially therapeutic viral genomes in the shortest possible time.


Assuntos
Adenovirus Caninos/genética , Edição de Genes , Animais , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Cães , Genoma Viral , Terapia Viral Oncolítica , Reparo de DNA por Recombinação
12.
Biochem Biophys Rep ; 28: 101106, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34458596

RESUMO

Delay in cancer diagnosis often results in metastasis and an inability to successfully treat the tumor. The use of broadly cancer-specific biomarkers at an early stage may improve cancer treatment and staging. This study has explored circulatory exosomal miRNAs as potential diagnostic biomarkers to identify cancer patients. Secretory exosomal miRNAs were isolated from 13 canine cancer cell lines (lymphoma, mast cell tumor, histiocytic cell line, osteosarcoma, melanoma, and breast tumor) and were sequenced by Next-Generation sequencing (NGS). We have identified 6 miRNAs (cfa-miR-9, -1841, -1306, -345, -132, and -26b) by NGS that were elevated in all cancer cell types. The miRNAs identified by NGS were then examined by Q-RT-PCR. The PCR data demonstrated similar expression patterns to those seen with NGS but provided fold differences that were much lower than those seen for NGS. Cfa-miR-9 was found to be the most consistently elevated miRNA in NGS and PCR, making it the most likely miRNA to prove diagnostic. In this study, we have demonstrated that it is possible to identify exosomal miRNAs with elevated secretion across multiple tumor types that could be used as circulatory diagnostic biomarkers for liquid biopsy in the future.

13.
Heliyon ; 7(2): e06210, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33615011

RESUMO

Osteosarcoma is one among the most common neoplasms in dogs. Current treatments show limited efficacy and fail to prevent metastasis. Conditionally replicative adenoviruses (CRAd) replicate exclusively in targeted tumor cells and release new virus particles to infect additional cells. We proposed that OC-CAVE1 (CAV2 with the E1A promoter replaced with the osteocalcin promotor) may also enhance existing immunity against tumors by overcoming immune tolerance via exposure of new epitopes and cytokine signaling. Eleven client-owned dogs with spontaneously occurring osteosarcomas were enrolled in a pilot study. All dogs were injected with OC-CAVE1 following amputation of the affected limb or limb-sparing surgery. Dogs were monitored for viremia and viral shedding. There was minimal virus shedding in urine and feces by the 6th day and no virus was present in blood after 4 weeks. CAV-2 antibody-titers increased in all of the patients, post-CRAd injection. Immunological assays were performed to monitor 1) humoral response against tumors, 2) levels of circulatory CD11c + cells, 3) levels of regulatory T cells, and 4) cytotoxic activity of tumor specific T cells against autologous tumor cells between pre-CRAd administration and 4 weeks post-CRAd administration samples. Administration of the CRAd OC-CAVE1 resulted in alteration of some immune response parameters but did not appear to result in increased survival duration. However, 2 dogs in the study achieved survival times in excess of 1 year. Weak replication of OC-CAVE1 in metastatic cells and delay of chemotherapy following CRAd treatment may contribute to the lack of immune response and improvement in survival time of the clinical patients.

14.
Vet Med Sci ; 7(3): 654-659, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33502125

RESUMO

The University of Missouri (MU) has established a colony of dystrophin-deficient dogs with a mixed breed background to mirror the variable pathologic effects of dystrophinopathies between persons of a given kindred to further the understanding of the genetic and molecular basis of the variable phenotype; thus to facilitate discovery of an effective therapeutic strategy. Herein we report the phenotype and genotype of a normal-appearing 10-month-old colony female that died suddenly. At necropsy examination, there were reduced skeletal and laryngeal muscle volume and mild dilatation of the oesophagus. Microscopic findings consisted of extensive degeneration and regeneration of the axial skeletal, tongue, oesophageal, and laryngeal muscles that were characterized by considerable central nucleation, individual fibre mineralization and interstitial fibrosis. The myocardial findings were limited to infiltration of adipose cells in the interstitium. The female dog was a compound heterozygote with one X chromosome carrying a point mutation in intron 6 of the dystrophin gene and the other X chromosome carrying a repetitive element insertion in intron 13 of the dystrophin gene. Although the direct cause of death was uncertain, it might likely be due to sudden cardiac death as has been seen in Duchenne muscular dystrophy patients. This case demonstrated dystrophinopathy in female dogs that have no ameliorating normal X chromosome.


Assuntos
Doenças do Cão/genética , Distrofina/deficiência , Distrofias Musculares/genética , Animais , Cães , Evolução Fatal , Feminino , Heterozigoto
15.
PLoS One ; 15(11): e0240807, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33166332

RESUMO

Gene therapy is a promising treatment option for cancer. However, its utility may be limited due to expression in off-target cells. Cancer-specific promoters such as telomerase reverse transcriptase (TERT), survivin, and chemokine receptor 4 (CXCR4) have enhanced activity in a variety of human and murine cancers, however, little has been published regarding these promoters in dogs. Given the utility of canine cancer models, the activity of these promoters along with adenoviral E2F enhanced E1a promoter (EEE) was evaluated in a variety of canine tumors, both from the endogenous gene and from exogenously administered constructs. Endogenous expression levels were measured for cTERT, cSurvivin, and cCXCR4 and were low for all three, with some non-malignant and some tumor cell lines and tissues expressing the gene. Expression levels from exogenously supplied promoters were measured by both the number of cells expressing the construct and the intensity of expression in individual cells. Exogenously supplied promoters were active in more cells in all tumor lines than in normal cells, with the EEE promoter being most active, followed by cTERT. The intensity of expression varied more with cell type than with specific promoters. Ultimately, no single promoter was identified that would result in reliable expression, regardless of the tumor type. Thus, these findings imply that identification of a pan-cancer promoter may be difficult. In addition, this data raises the concern that endogenous expression analysis may not accurately predict exogenous promoter activity.


Assuntos
Doenças do Cão/genética , Neoplasias/veterinária , Regiões Promotoras Genéticas , Regulação para Cima , Animais , Linhagem Celular Tumoral , Cães , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Células Madin Darby de Rim Canino , Neoplasias/genética
16.
Biotechniques ; 68(6): 311-317, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32301333

RESUMO

Extracting sufficient quantity and quality RNA from bone is essential for downstream application, such as transcriptomic sequencing, to evaluate gene expression. Isolation of RNA from bone presents a unique challenge owing to the hypocellular, brittle and mineralized matrix, which makes homogenizing the tissue difficult and provides little RNA to work with. Removal of contaminating tissue, such as bone marrow and connective tissue, is essential for isolating RNA that is unique to osteoblasts, osteoclasts and osteocytes. This study established a method to effectively isolate RNA from normal canine bone cells using the phalanges, without contamination from other tissue types, for downstream transcriptomic analysis.


Assuntos
Osso e Ossos/química , Biologia Molecular/métodos , RNA/isolamento & purificação , Transcriptoma/genética , Animais , Cães , Regulação da Expressão Gênica/genética , Osteoblastos/química , Osteoclastos/química , Osteócitos/química , RNA/química , RNA/genética
17.
J Vet Sci ; 20(5): e48, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31565891

RESUMO

Breast cancer is among the most common malignancies affecting women and reproductively intact female dogs, resulting in death from metastatic disease if not treated effectively. To better manage the disease progression, canine mammary tumor (CMT) cells derived from malignant canine mammary cancers were fused to autologous dendritic cells (DCs) to produce living hybrid-cell fusion vaccines for canine patients diagnosed with spontaneous mammary carcinoma. The high-speed sorting of rare autologous canine patient DCs from the peripheral blood provides the autologous component of fusion vaccines, and fusion to major histocompatibility complex-unmatched CMT cells were produced at high rates. The vaccinations were delivered to each patient following a surgical resection 3 times at 3-week intervals in combination with immuno-stimulatory oligonucleotides and Gemcitabine adjunct therapy. The immunized patient animals survived 3.3-times longer (median survival 611 days) than the control patients (median survival 184 days) and also appeared to exhibit an enhanced quality of life. A comparison of vaccinated patients diagnosed with inflammatory mammary carcinoma resulted in a very short median survival (42 days), suggesting no effect of vaccination. The data showed that the development of autologous living DC-based vaccine strategies in patient animals designed to improve the management of canine mammary carcinoma can be successful and may allow an identification of the antigens that can be translatable to promote effective immunity in canine and human patients.


Assuntos
Vacinas Anticâncer/administração & dosagem , Carcinoma/veterinária , Células Dendríticas/fisiologia , Neoplasias Mamárias Animais/prevenção & controle , Animais , Carcinoma/prevenção & controle , Fusão Celular , Linhagem Celular Tumoral , Modelos Animais de Doenças , Cães , Feminino
18.
Neuromuscul Disord ; 28(11): 927-937, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30286978

RESUMO

In humans, dystrophin mutations cause the X-linked recessive disorder known as Duchenne muscular dystrophy (DMD). These mutations result in skeletal and cardiac muscle damage with mortality increasingly associated with cardiomyopathy. We have identified a novel dystrophin mutation in exon 21 in a line of Australian Labradoodles; affected dogs develop progressive clinical signs including poor weight gain and weight loss, gait abnormalities, exercise intolerance, skeletal muscle atrophy, macroglossa, ptyalism, dysphagia, kyphosis, and a plantigrade stance. Echocardiographic abnormalities include hyperechoic foci in the left ventricular papillary muscles, septal hypokinesis, and decreased left ventricular systolic and diastolic volume and internal diameter. Holter recordings found a Mobitz type II second-degree atrioventricular (AV) block in one affected dog. Analysis of phosphocreatine-to-ATP ratios (PCr/ATP) (obtained via cardiac magnetic resonance imaging and spectroscopy evaluation), found no statistically significant difference in the mean PCr/ATP between groups. Histopathologic skeletal muscle changes included fibrofatty infiltration, myocyte degeneration, necrosis, and regeneration, lymphohistiocytic inflammation, and mineralization; cardiac changes were limited to a focal area of mineralization adjacent to the sinoatrial node in the dog with a second-degree AV block. Due to rapidly progressive clinical signs, a severe phenotype, and potential for cardiac involvement, Australian Labradoodle dystrophinopathy may be a useful model to further study DMD pathogenesis.


Assuntos
Doenças do Cão/genética , Distrofina/genética , Distrofia Muscular Animal/genética , Mutação , Animais , Austrália , Doenças do Cão/patologia , Cães , Masculino , Músculo Esquelético/patologia , Distrofia Muscular Animal/patologia
19.
PLoS One ; 12(1): e0169532, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28068367

RESUMO

Adenoviruses are the most widely used vectors in cancer gene therapy. Adenoviruses vectors are well characterized and are easily manipulated. Adenovirus serotype 5 (Ad5) is the most commonly used human serotype. Ad5 internalization into host cells is a combined effect of binding of Ad5 fiber knob with the coxsackie virus and adenovirus receptor (CAR) and binding of RGD motifs in viral penton to cell surface integrins (αvß3, αvß5). Ad5's wide range of host-cell transduction and lack of integration into the host genome have made it an excellent choice for cancer therapeutics. However, Ad5 has limited ability to transduce cells of hematopoietic origin. It has been previously reported that low or no expression of CAR is a potential obstacle to Ad5 infection in hematopoietic origin cells. In addition, we have previously reported that low levels of cell surface integrins (αvß3, αvß5) may inhibit Ad5 infection in canine lymphoma cell lines. In the current report we have examined the ability of an Ad5 vector to infect human (HEK293) and canine non-cancerous (NCF and PBMC), canine non-hematopoietic origin cancer (CMT28, CML7, and CML10), and canine hematopoietic origin cancer (DH82, 17-71, OSW, MPT-1, and BR) cells. In addition, we have quantified CAR, αvß3 and αvß5 integrin transcript expression in these cells by using quantitative reverse transcriptase PCR (q-RT-PCR). Low levels of integrins were present in MPT1, 17-71, OSW, and PBMC cells in comparison to CMT28, DH82, and BR cells. CAR mRNA levels were comparatively higher in MPT1, 17-71, OSW, and PBMC cells. This report confirms and expands the finding that low or absent expression of cell surface integrins may be the primary reason for the inability of Ad5-based vectors to transduce cells of lymphocytic origin and some myeloid cells but this is not true for all hematopoietic origin cells. For efficient use of Ad5-based therapeutic vectors in cancers of lymphocytic origin, it is important to address the defects in cell surface integrins.


Assuntos
Adenovírus Humanos/fisiologia , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/metabolismo , Integrinas/metabolismo , Linfócitos/metabolismo , Linfócitos/virologia , Transdução Genética , Animais , Linhagem Celular , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/genética , Cães , Expressão Gênica , Genes Reporter , Humanos , Integrinas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
20.
BMC Vet Res ; 12(1): 272, 2016 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-27912752

RESUMO

BACKGROUND: Splenic masses are common in older dogs; yet diagnosis preceding splenectomy and histopathology remains elusive. MicroRNAs (miRNAs) are short, non-coding RNAs that play a role in post-transcriptional regulation, and differential expression of miRNAs between normal and tumor tissue has been used to diagnose neoplastic diseases. The objective of this study was to determine differential expression of miRNAs by use of RNA-sequencing in canine spleens that were histologically confirmed as hemangiosarcoma, nodular hyperplasia, or normal. RESULTS: Twenty-two miRNAs were found to be differentially expressed in hemangiosarcoma samples (4 between hemangiosarcoma and both nodular hyperplasia and normal spleen and 18 between hemangiosarcoma and normal spleen only). In particular, mir-26a, mir-126, mir-139, mir-140, mir-150, mir-203, mir-424, mir-503, mir-505, mir-542, mir-30e, mir-33b, mir-365, mir-758, mir-22, and mir-452 are of interest in the pathogenesis of hemangiosarcoma. CONCLUSIONS: Findings of this study confirm the hypothesis that miRNA expression profiles are different between canine splenic hemangiosarcoma, nodular hyperplasia, and normal spleens. A large portion of the differentially expressed miRNAs have roles in angiogenesis, with an additional group of miRNAs being dysregulated in vascular disease processes. Two other miRNAs have been implicated in cancer pathways such as PTEN and cell cycle checkpoints. The finding of multiple miRNAs with roles in angiogenesis and vascular disease is important, as hemangiosarcoma is a tumor of endothelial cells, which are driven by angiogenic stimuli. This study shows that miRNA dysregulation is a potential player in the pathogenesis of canine splenic hemangiosarcoma.


Assuntos
Doenças do Cão/genética , Hemangiossarcoma/veterinária , MicroRNAs/biossíntese , Baço/metabolismo , Baço/patologia , Neoplasias Esplênicas/veterinária , Animais , Doenças do Cão/diagnóstico , Doenças do Cão/patologia , Cães , Perfilação da Expressão Gênica , Hemangiossarcoma/diagnóstico , Hemangiossarcoma/genética , Hemangiossarcoma/patologia , Hiperplasia/diagnóstico , Hiperplasia/genética , Hiperplasia/veterinária , Neoplasias Esplênicas/diagnóstico , Neoplasias Esplênicas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...