Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 249
Filtrar
1.
Int J Obes (Lond) ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740855

RESUMO

BACKGROUND: Perceived weight discrimination is associated with increased risk for chronic diseases and reduced life expectancy. Nevertheless, little is known about perceived weight discrimination in racial, ethnic, and sexual minority groups or in individuals at the intersections of those groups. The goal of this study was to identify sociodemographic predictors of perceived weight discrimination. SUBJECTS/METHODS: A diverse sample of adults (37% Black/African American, 36% Latino, 29% sexual minority) with a body mass index (BMI) ≥ 18.5 kg/m2 were recruited from a national US panel to complete an online survey (N = 2454). Perceived weight discrimination was assessed with the Stigmatizing Situations Survey-Brief (SSI-B). Using hierarchical linear regression analysis, SSI-B scores were predicted from the four sociodemographic characteristics of interest (gender, race, ethnicity, and sexual orientation) while controlling for BMI, age, education, and income (Step 1). At Step 2, all two-way interactions between the four sociodemographic characteristics were added to the model. RESULTS: At Step 1, higher SSI-B scores were observed for Latino (vs. non-Latino) adults, sexual minority (vs. heterosexual) adults, younger (vs. older) adults, adults with higher (vs. lower) levels of education, and adults with higher (vs. lower) BMI. At Step 2, race interacted with gender, ethnicity, and sexual orientation to predict SSI-B scores such that relatively higher scores were observed for non-Black women, Black men, adults who identified as Black and Latino, and non-Black sexual minority adults. CONCLUSIONS: Perceived weight discrimination varied across sociodemographic groups, with some subgroups reporting relatively high frequency. Black race appeared to be protective for some subgroups (e.g., Black women), but risk-enhancing for others (e.g., Black men, individuals who identified as Black and Latino). Additional research is needed to identify specific factors that cause certain sociodemographic groups -and indeed, certain individuals-to perceive higher levels of weight discrimination than others.

2.
Neuroscience ; 530: 46-55, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37640133

RESUMO

Patients with traumatic brain injury are typically maintained at low-normal levels of arterial partial pressure of carbon dioxide (PaCO2) to counteract the risk of elevated intracranial pressure during intensive care. However, several studies suggest that management at hypercarbic levels may have therapeutic benefit. Here we examined the impact of CO2 levels on spreading depolarizations (SD), a mechanism and marker of acute lesion development in stroke and brain trauma. In an acute preparation of mechanically ventilated (30/70 O2/N2) female rats, SDs were evoked by cortical KCl application and monitored by electrophysiology and laser doppler flowmetry; CO2 levels were adjusted by ventilator settings and supplemental CO2. During 90 min of KCl application, rats were maintained at hypocapnia (end-tidal CO2 22 ± 2 mmHg) or hypercapnia (57 ± 4 mmHg) but did not differ significantly in arterial pH (7.31 ± 0.10 vs. 7.22 ± 0.08, p = 0.31) or other variables. Surprisingly, there was no difference between groups in the number of SDs recorded (10.7 ± 4.2 vs. 11.7 ± 3.1; n = 3 rats/group; p = 0.75) nor in SD durations (64 ± 27 vs. 69 ± 37 sec, p = 0.54). In separate experiments (n = 3), hypoxia was induced by decreasing inhaled O2 to 10% and single SDs were induced under interleaved conditions of hypo-, normo-, and hypercapnia. No differences in SD duration were observed. In both normoxia and hypoxia experiments, however, mean arterial pressures were negatively correlated with SD durations (normoxia R2 = -0.29; hypoxia R2 = -0.61, p's < 0.001). Our results suggest that any therapeutic benefit of elevated CO2 therapy may be dependent on an acidic shift in pH or may only be observed in conditions of focal brain injury.

3.
Adv Exp Med Biol ; 1402: 83-93, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37052848

RESUMO

Over several decades the perception and therefore description of articular cartilage changed substantially. It has transitioned from being described as a relatively inert tissue with limited repair capacity, to a tissue undergoing continuous maintenance and even adaption, through a range of complex regulatory processes. Even from the narrower lens of biomechanics, the engagement with articular cartilage has changed from it being an interesting, slippery material found in the hostile mechanical environment between opposing long bones, to an intriguing example of mechanobiology in action. The progress revealing this complexity, where physics, chemistry, material science and biology are merging, has been described with increasingly sophisticated computational models. Here we describe how these computational models of cartilage as an integrated system can be combined with the approach of structural reliability analysis. That is, causal, deterministic models placed in the framework of the probabilistic approach of structural reliability analysis could be used to understand, predict, and mitigate the risk of cartilage failure or pathology. At the heart of this approach is seeing cartilage overuse and disease processes as a 'material failure', resulting in failure to perform its function, which is largely mechanical. One can then describe pathways to failure, for example, how homeostatic repair processes can be overwhelmed leading to a compromised tissue. To illustrate this 'pathways to failure' approach, we use the interplay between cartilage consolidation and lubrication to analyse the increase in expected wear rates associated with cartilage defects or meniscectomy.


Assuntos
Cartilagem Articular , Reprodutibilidade dos Testes , Cartilagem Articular/metabolismo , Simulação por Computador , Fenômenos Biomecânicos , Homeostase
4.
Influenza Other Respir Viruses ; 17(3): e13117, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36970572

RESUMO

Background: Respiratory syncytial virus (RSV) seasonality is dependent on the local climate. We assessed the stability of RSV seasonality prior to the SARS-CoV-2 pandemic in Western Australia (WA), a state spanning temperate and tropical regions. Method: RSV laboratory testing data were collected from January 2012 to December 2019. WA was divided into three regions determined by population density and climate: Metropolitan, Northern and Southern. Season threshold was calculated per region at 1.2% annual cases, with onset the first of ≥2 weeks above this threshold and offset as the last week before ≥2 weeks below. Results: The detection rate of RSV in WA was 6.3/10,000. The Northern region had the highest detection rate (15/10,000), more than 2.5 times the Metropolitan region (detection rate ratio 2.7; 95% CI, 2.6-2.9). Test percentage positive was similar in the Metropolitan (8.6%) and Southern (8.7%) regions, with the lowest in the Northern region (8.1%). RSV seasons in the Metropolitan and Southern regions occurred annually, with a single peak and had consistent timing and intensity. The Northern tropical region did not experience a distinct season. Proportion of RSV A to RSV B in the Northern region differed from the Metropolitan region in 5 of the 8 years studied. Conclusions: Detection rate of RSV in WA is high, especially in the Northern region, where climate, an expanded at-risk population and increased testing may have contributed to greater numbers. Before the SARS-CoV-2 pandemic, RSV seasonality in WA was consistent in timing and intensity for the Metropolitan and Southern regions.


Assuntos
COVID-19 , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Humanos , Lactente , SARS-CoV-2 , Infecções por Vírus Respiratório Sincicial/epidemiologia , Infecções por Vírus Respiratório Sincicial/diagnóstico , Austrália Ocidental/epidemiologia , COVID-19/epidemiologia , Estações do Ano
5.
Comput Methods Programs Biomed ; 230: 107353, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36736148

RESUMO

BACKGROUND AND OBJECTIVES: Previous studies have shown that there is potentially interstitial fluid exchange between cartilage tissue and the subarticular spongiosa region in the case of injury or disease (e.g., osteoarthritis and osteoporosis). Interstitial flow is also required for cartilage lubrication under joint load. A key question then is how cartilage lubrication is modified by increased interstitial fluid leakage across the osteochondral junction. Thus, the purpose of this study is to develop a numerical model to investigate changes in cartilage lubrication with changes in osteochondral junction leakage. METHODS: The multi-phase coupled model includes domains corresponding to the contact gap, cartilage tissue and subchondral bone plate region (ScBP). Each of these domains are treated as poroelastic systems, with their coupling implemented through mass and pressure continuity. The effects of osteochondral junction leakage on lubrication were investigated with a parametric study on the relative permeability between the ScBP and cartilage tissue. RESULTS: Significant effects of ScBP permeability were predicted, especially during the early stage of the junction leakage development (early stage of the disease). There is a significant reduction in mixed-mode lubrication duration under the effect of increased junction leakage (the cartilage tissue mixed-mode lubrication duration is about 33% decrease for a relative permeability ratio of 0.1 between ScBP and cartilage tissue, and about 52% decrease under the osteoarthritis condition). In addition, the time for cartilage to reach steady-state consolidation is significantly reduced when ScBP permeability increases (the consolidation time reduces from roughly 2 h to 1.2 h when the relative permeability ratio increases from 0.001 to 0.1, and it reduces to 0.8 h for an advanced osteoarthritis condition). It is predicted that the initial friction coefficient could increase by over 60% when the ScBP permeability is consistent with an advanced osteoarthritis (OA) condition. CONCLUSION: Increased osteochondral junction leakage induced by joint injury and disease could result in increased cartilage surface wear rates due to more rapid interstitial fluid depressurization within articular cartilage.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Lubrificação , Fricção , Permeabilidade
6.
Neuroscience ; 509: 20-35, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36332692

RESUMO

Acceleration/deceleration forces are a common component of various causes of mild traumatic brain injury (mTBI) and result in strain and shear forces on brain tissue. A small quantifiable volume dubbed the compensatory reserve volume (CRV) permits energy transmission to brain tissue during acceleration/deceleration events. The CRV is principally regulated by cerebral blood flow (CBF) and CBF is primarily determined by the concentration of inspired carbon dioxide (CO2). We hypothesized that experimental hypercapnia (i.e. increased inspired concentration of CO2) may act to prevent and mitigate the actions of acceleration/deceleration-induced TBI. To determine these effects C57Bl/6 mice underwent experimental hypercapnia whereby they were exposed to medical-grade atmospheric air or 5% CO2 immediately prior to an acceleration/deceleration-induced mTBI paradigm. mTBI results in significant increases in righting reflex time (RRT), reductions in core body temperature, and reductions in general locomotor activity-three hours post injury (hpi). Experimental hypercapnia immediately preceding mTBI was found to prevent mTBI-induced increases in RRT and reductions in core body temperature and general locomotor activity. Ribonucleic acid (RNA) sequencing conducted four hpi revealed that CO2 exposure prevented mTBI-induced transcriptional alterations of several targets related to oxidative stress, immune, and inflammatory signaling. Quantitative real-time PCR analysis confirmed the prevention of mTBI-induced increases in mitogen-activated protein kinase kinase kinase 6 and metallothionein-2. These initial proof of concept studies reveal that increases in inspired CO2 mitigate the detrimental contributions of acceleration/deceleration events in mTBI and may feasibly be translated in the future to humans using a medical device seeking to prevent mTBI among high-risk groups.


Assuntos
Concussão Encefálica , Camundongos , Humanos , Animais , Concussão Encefálica/prevenção & controle , Dióxido de Carbono , Desaceleração , Hipercapnia , Aceleração , Respiração
7.
Tissue Barriers ; 11(3): 2110798, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-35959954

RESUMO

The glomerular basement membrane (GBM) is an important tissue structure in kidney function. It is the membrane through which filtrate and solutes must pass to reach the nephron tubules. This review focuses on the spatial location of the main extracellular matrix components of the GBM. It also attempts to explain this organization in terms of their synthesis, transport, and loss. The picture that emerges is that the collagen IV and laminin content of GBM are in a very slow dynamic disequilibrium, leading to GBM thickening with age, and in contrast, some heparan sulfate proteoglycans are in a dynamic equilibrium with a very rapid turnover (i.e. half-life measured in ~hours) and flow direction against the flow of filtrate. The highly rapid heparan sulfate turnover may serve several roles, including an unclogging mechanism for the GBM, compressive stiffness of the GBM fiber network, and/or enabling podocycte-endothelial crosstalk against the flow of filtrate.


Assuntos
Membrana Basal Glomerular , Proteoglicanas de Heparan Sulfato , Heparitina Sulfato , Laminina , Néfrons
8.
Viruses ; 16(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38275942

RESUMO

Sindbis virus (SINV) is a widely dispersed mosquito-borne alphavirus. Reports of Sindbis disease are largely restricted to northern Europe and South Africa. SINV is frequently sampled in Australian mosquito-based arbovirus surveillance programs, but human disease has rarely been reported. Molecular epidemiological studies have characterized six SINV genotypes (G1-G6) based on E2 gene phylogenies, mostly comprising viruses derived from the African-European zoogeographical region and with limited representation of Australasian SINV. In this study, we conducted whole genome sequencing of 66 SINV isolates sampled between 1960 and 2014 from countries of the Australasian region: Australia, Malaysia, and Papua New Guinea. G2 viruses were the most frequently and widely sampled, with three distinct sub-lineages defined. No new G6 SINV were identified, confirming geographic restriction of these viruses to south-western Australia. Comparison with global SINV characterized large-scale nucleotide and amino acid sequence divergence between African-European G1 viruses and viruses that circulate in Australasia (G2 and G3) of up to 26.83% and 14.55%, respectively, divergence that is sufficient for G2/G3 species demarcation. We propose G2 and G3 are collectively a single distinct alphavirus species that we name Argyle virus, supported by the inapparent or mild disease phenotype and the higher evolutionary rate compared with G1. Similarly, we propose G6, with 24.7% and 12.61% nucleotide and amino acid sequence divergence, is a distinct alphavirus species that we name Thomson's Lake virus.


Assuntos
Culicidae , Sindbis virus , Animais , Humanos , Sindbis virus/genética , Austrália , Genômica , Nucleotídeos
9.
PLoS Negl Trop Dis ; 16(11): e0010754, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36409739

RESUMO

BACKGROUND: A fatal case of Japanese encephalitis (JE) occurred in a resident of the Tiwi Islands, in the Northern Territory of Australia in February 2021, preceding the large JE outbreak in south-eastern Australia in 2022. This study reports the detection, whole genome sequencing and analysis of the virus responsible (designated JEV/Australia/NT_Tiwi Islands/2021). METHODS: Reverse transcription quantitative PCR (RT-qPCR) testing was performed on post-mortem brain specimens using a range of JE virus (JEV)-specific assays. Virus isolation from brain specimens was attempted by inoculation of mosquito and mammalian cells or embryonated chicken eggs. Whole genome sequencing was undertaken using a combination of Illumina next generation sequencing methodologies, including a tiling amplicon approach. Phylogenetic and selection analyses were performed using alignments of the Tiwi Islands JEV genome and envelope (E) protein gene sequences and publicly available JEV sequences. RESULTS: Virus isolation was unsuccessful and JEV RNA was detected only by RT-qPCR assays capable of detecting all JEV genotypes. Phylogenetic analysis revealed that the Tiwi Islands strain is a divergent member of genotype IV (GIV) and is closely related to the 2022 Australian outbreak virus (99.8% nucleotide identity). The Australian strains share highest levels of nucleotide identity with Indonesian viruses from 2017 and 2019 (96.7-96.8%). The most recent common ancestor of this Australian-Indonesian clade was estimated to have emerged in 2007 (95% HPD range: 1998-2014). Positive selection was detected using two methods (MEME and FEL) at several sites in the E and non-structural protein genes, including a single site in the E protein (S194N) unique to the Australian GIV strains. CONCLUSION: This case represents the first detection of GIV JEV acquired in Australia, and only the second confirmed fatal human infection with a GIV JEV strain. The close phylogenetic relationship between the Tiwi Islands strain and recent Indonesian viruses is indicative of the origin of this novel GIV lineage, which we estimate has circulated in the region for several years prior to the Tiwi Islands case.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Vírus da Encefalite Japonesa (Subgrupo) , Encefalite Japonesa , Animais , Humanos , Filogenia , Encefalite Japonesa/epidemiologia , Genótipo , Nucleotídeos , Northern Territory , Mamíferos
10.
Viruses ; 14(11)2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36366578

RESUMO

A fatal case of Japanese encephalitis (JE) occurred in northern Australia in early 2021. Sequence studies showed that the virus belonged to genotype IV (GIV), a genotype previously believed to be restricted to the Indonesian archipelago. This was the first locally acquired case of Japanese encephalitis virus (JEV) GIV to occur outside Indonesia, and the second confirmed fatal human case caused by a GIV virus. A closely related GIV JEV strain subsequently caused a widespread outbreak in eastern Australia in 2022 that was first detected by fetal death and abnormalities in commercial piggeries. Forty-two human cases also occurred with seven fatalities. This has been the first major outbreak of JEV in mainland Australia, and geographically the largest virgin soil outbreak recorded for JEV. This outbreak provides an opportunity to discuss and document the factors involved in the virus' spread and its ecology in a novel ecological milieu in which other flaviviruses, including members of the JE serological complex, also occur. The probable vertebrate hosts and mosquito vectors are discussed with respect to virus spread and its possible endemicity in Australia, and the need to develop a One Health approach to develop improved surveillance methods to rapidly detect future outbreak activity across a large geographical area containing a sparse human population. Understanding the spread of JEV in a novel ecological environment is relevant to the possible threat that JEV may pose in the future to other receptive geographic areas, such as the west coast of the United States, southern Europe or Africa.


Assuntos
Culex , Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Animais , Humanos , Vírus da Encefalite Japonesa (Espécie)/genética , Genótipo , Mosquitos Vetores , Vertebrados
11.
Viruses ; 14(10)2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36298690

RESUMO

Non-pharmaceutical interventions (NPIs) to reduce SARS-CoV-2 transmission disrupted respiratory virus seasonality. We examined the unusual return of human metapneumovirus (hMPV) in Western Australia following a period of absence in 2020. We analysed hMPV laboratory testing data from 1 January 2017 to 31 December 2021. Whole-genome sequencing of selected hMPV-positive samples was performed using a tiled-amplicon approach. Following an absence in spring 2020, an unusual hMPV surge was observed during the wet summer season in the tropical Northern region in late 2020. Following a six-month delay, an intense winter season occurred in the subtropical/temperate Southern and Metropolitan regions. Compared to 2017-2019, hMPV incidence in 2021 increased by 3-fold, with a greater than 4-fold increase in children aged 1-4 years. There was a collapse in hMPV diversity in 2020, with the emergence of a single subtype. NPIs contributed to an absent 2020 season and a clonal hMPV resurgence. The summer surge and delayed winter season suggest that prevailing temperature and humidity are keys determinant of hMPV transmission. The increased incidence in 2021 was linked to an expanded cohort of hMPV-naïve 1-4-year-old children and waning population immunity. Further intense and unusual respiratory virus seasons are expected as COVID-19 associated NPIs are removed.


Assuntos
COVID-19 , Metapneumovirus , Infecções por Paramyxoviridae , Infecções Respiratórias , Humanos , Lactente , Pré-Escolar , Metapneumovirus/genética , Infecções por Paramyxoviridae/epidemiologia , Infecções por Paramyxoviridae/prevenção & controle , SARS-CoV-2/genética , Austrália Ocidental/epidemiologia , COVID-19/epidemiologia , COVID-19/prevenção & controle , Estações do Ano
12.
J Travel Med ; 29(6)2022 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-35532195

RESUMO

BACKGROUND: Multiple instances of flight-associated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission during long-haul flights have been reported during the COVID-19 pandemic. However, comprehensive investigations of passenger risk behaviours, before, during and after the flight, are scarce. METHODS: To investigate suspected SARS-CoV-2 transmission during a flight from United Arab Emirates to Australia in July 2020, systematic, repeated polymerase chain reaction (PCR) testing of passengers in hotel quarantine was linked to whole genome sequencing. Epidemiological analyses of in-depth interviews covering behaviours during the flight and activities pre- and post-boarding were used to identify risk factors for infection. RESULTS: Seventeen of the 95 passengers from four different travel origins had PCR-confirmed infection yielding indistinguishable genomic sequences. Two of the 17 passengers were symptomatic within 2 days of the flight, and classified as co-primary cases. Seven secondary cases were seated within two rows of the co-primary cases, but five economy passengers seated further away and three business class passengers were also infected (attack rate = 16% [15/93]). In multivariable analysis, being seated within two rows of a primary case [odds ratio (OR) 7.16; 95% confidence interval (CI) 1.66-30.85] and spending more than an hour in the arrival airport (OR 4.96; 95% CI 1.04-23.60) were independent predictors of secondary infection, suggesting travel-associated SARS-CoV-2 transmission likely occurred both during and after the flight. Self-reported increased hand hygiene, frequent aisle walking and using the bathroom on the plane did not independently affect the risk of SARS-CoV-2 acquisition. CONCLUSIONS: This investigation identified substantial in-flight transmission among passengers seated both within and beyond two rows of the primary cases. Infection of passengers in separate cabin classes also suggests transmission occurred outside the cabin environment, likely at the arrival airport. Recognizing that transmission may occur pre- and post-boarding may inform contact tracing advice and improve efforts to prevent future travel-associated outbreaks.


Assuntos
COVID-19 , SARS-CoV-2 , Aeronaves , COVID-19/epidemiologia , Humanos , Pandemias , SARS-CoV-2/genética , Viagem , Sequenciamento Completo do Genoma
13.
Nat Commun ; 13(1): 2884, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35610217

RESUMO

Human respiratory syncytial virus (RSV) is an important cause of acute respiratory infection with the most severe disease in the young and elderly. Non-pharmaceutical interventions and travel restrictions for controlling COVID-19 have impacted the circulation of most respiratory viruses including RSV globally, particularly in Australia, where during 2020 the normal winter epidemics were notably absent. However, in late 2020, unprecedented widespread RSV outbreaks occurred, beginning in spring, and extending into summer across two widely separated regions of the Australian continent, New South Wales (NSW) and Australian Capital Territory (ACT) in the east, and Western Australia. Through genomic sequencing we reveal a major reduction in RSV genetic diversity following COVID-19 emergence with two genetically distinct RSV-A clades circulating cryptically, likely localised for several months prior to an epidemic surge in cases upon relaxation of COVID-19 control measures. The NSW/ACT clade subsequently spread to the neighbouring state of Victoria and to cause extensive outbreaks and hospitalisations in early 2021. These findings highlight the need for continued surveillance and sequencing of RSV and other respiratory viruses during and after the COVID-19 pandemic, as mitigation measures may disrupt seasonal patterns, causing larger or more severe outbreaks.


Assuntos
COVID-19 , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Idoso , COVID-19/epidemiologia , COVID-19/prevenção & controle , Humanos , Lactente , Pandemias/prevenção & controle , Infecções por Vírus Respiratório Sincicial/epidemiologia , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vírus Sincicial Respiratório Humano/genética , Estações do Ano , Vitória
15.
Virus Evol ; 7(2): veab068, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34532066

RESUMO

Respiratory syncytial virus (RSV) is an important human respiratory pathogen. In temperate regions, a distinct seasonality is observed, where peaks of infections typically occur in early winter, often preceding the annual influenza season. Infections are associated with high rates of morbidity and mortality and in some populations exceed that of influenza. Two subtypes, RSV-A and RSV-B, have been described, and molecular epidemiological studies have shown that both viruses mostly co-circulate. This trend also appears to be the case for Australia; however, previous genomic studies have been limited to cases from one Eastern state-New South Wales. As such, the broader spatial patterns and viral traffic networks across the continent are not known. Here, we conducted a whole-genome study of RSV comparing strains across eastern and Western Australia during the period January 2016 to June 2017. In total, 96 new RSV genomes were sequenced, compiled with previously generated data, and examined using a phylodynamic approach. This analysis revealed that both RSV-A and RSV-B strains were circulating, and each subtype was dominated by a single genotype, RSV-A ON1-like and RSV-B BA10-like viruses. Some geographical clustering was evident in strains from both states with multiple distinct sub-lineages observed and relatively low mixing across jurisdictions, suggesting that endemic transmission was likely seeded from imported, unsampled locations. Overall, the RSV phylogenies reflected a complex pattern of interactions across multiple epidemiological scales from fluid virus traffic across global and regional networks to fine-scale local transmission events.

16.
Am J Physiol Renal Physiol ; 321(4): F527-F547, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34459223

RESUMO

Continuous measurement of bladder urine oxygen tension (Po2) is a method to potentially detect renal medullary hypoxia in patients at risk of acute kidney injury (AKI). To assess its practicality, we developed a computational model of the peristaltic movement of a urine bolus along the ureter and the oxygen exchange between the bolus and ureter wall. This model quantifies the changes in urine Po2 as urine transits from the renal pelvis to the bladder. The model parameters were calibrated using experimental data in rabbits, such that most of the model predictions are within ±1 SE of the reported mean in the experiment, with the average percent difference being 7.0%. Based on parametric experiments performed using a model scaled to the geometric dimensions of a human ureter, we found that bladder urine Po2 is strongly dependent on the bolus volume (i.e., bolus volume-to-surface area ratio), especially at a volume less than its physiological (baseline) volume (<0.2 mL). For the model assumptions, changes in peristaltic frequency resulted in a minimal change in bladder urine Po2 (<1 mmHg). The model also predicted that there exists a family of linear relationships between the bladder-urine Po2 and pelvic urine Po2 for different input conditions. We conclude that it may technically be possible to predict renal medullary Po2 based on the measurement of bladder urine Po2, provided that there are accurate real-time measurements of model input parameters.NEW & NOTEWORTHY Measurement of bladder urine oxygen tension has been proposed as a new method to potentially detect the risk of acute kidney injury in patients. A computational model of oxygen exchange between urine bolus and ureteral tissue shows that it may be technically possible to determine the risk of acute kidney injury based on the measurement of bladder urine oxygen tension, provided that the measurement data are properly interpreted via a computational model.


Assuntos
Injúria Renal Aguda/urina , Modelos Biológicos , Oxigênio/urina , Ureter/metabolismo , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/genética , Injúria Renal Aguda/fisiopatologia , Animais , Simulação por Computador , Difusão , Humanos , Pressão Parcial , Peristaltismo , Coelhos , Ureter/patologia , Ureter/fisiopatologia
17.
Pediatr Infect Dis J ; 40(10): 873-879, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34321447

RESUMO

BACKGROUND: Acute wheezing is one of the most common hospital presentations for young children. Respiratory syncytial virus (RSV) and rhinovirus (RV) species A, B and the more recently described species C are implicated in the majority of these presentations. However, the relative importance and age-specificities of these viruses have not been defined. Hence, this study aimed to establish these relationships in a large cohort of prospectively recruited hospitalized children. METHODS: The study cohort was 390 children 0-16 years of age presenting with acute wheezing to a children's emergency department, 96.4% being admitted. A nonwheezing control population of 190 was also recruited. Nasal samples were analyzed for viruses. RESULTS: For the first 6 months of life, RSV was the dominant virus associated with wheezing (P < 0.001). From 6 months to 2 years, RSV, RV-A and RV-C were all common but none predominated. From 2 to 6 years, RV-C was the dominant virus detected (50-60% of cases), 2-3 times more common than RV-A and RSV, RSV decreasing to be absent from 4 to 7 years. RV-B was rare at all ages. RV-C was no longer dominant in children more than 10 years of age. Overall, RV-C was associated with lower mean oxygen saturation than any other virus (P < 0.001). Controls had no clear age distribution of viruses. CONCLUSION: This study establishes a clear profile of age specificity of virus infections causing moderate to severe wheezing in children: RSV as the dominant cause in the first 6 months and RV-C in preschool-age children.


Assuntos
Hospitalização/estatística & dados numéricos , Sons Respiratórios/etiologia , Vírus Sincicial Respiratório Humano/patogenicidade , Rhinovirus/patogenicidade , Doença Aguda , Adolescente , Fatores Etários , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Nariz/virologia , Saturação de Oxigênio , Infecções por Picornaviridae/complicações , Infecções por Picornaviridae/virologia , Estudos Prospectivos , Infecções por Vírus Respiratório Sincicial/complicações , Infecções por Vírus Respiratório Sincicial/virologia
18.
Viruses ; 13(3)2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33804215

RESUMO

Ross River virus (RRV) is the most medically significant mosquito-borne virus of Australia, in terms of human morbidity. RRV cases, characterised by febrile illness and potentially persistent arthralgia, have been reported from all Australian states and territories. RRV was the cause of a large-scale epidemic of multiple Pacific Island countries and territories (PICTs) from 1979 to 1980, involving at least 50,000 cases. Historical evidence of RRV seropositivity beyond Australia, in populations of Papua New Guinea (PNG), Indonesia and the Solomon Islands, has been documented. We describe the genomic characterisation and timescale analysis of the first isolate of RRV to be sampled from PNG to date. Our analysis indicates that RRV has evolved locally within PNG, independent of Australian lineages, over an approximate 40 year period. The mean time to most recent common ancestor (tMRCA) of the unique PNG clade coincides with the initiation of the PICTs epidemic in mid-1979. This may indicate that an ancestral variant of the PNG clade was seeded into the region during the epidemic, a period of high RRV transmission. Further epidemiological and molecular-based surveillance is required in PNG to better understand the molecular epidemiology of RRV in the general Australasian region.


Assuntos
Culicidae/virologia , Evolução Molecular , Genoma Viral , Ross River virus/genética , Análise de Sequência , Infecções por Alphavirus/virologia , Animais , Humanos , Papua Nova Guiné , Filogenia , Ross River virus/classificação , Ross River virus/isolamento & purificação
19.
Comput Methods Programs Biomed ; 203: 106053, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33761367

RESUMO

BACKGROUND AND OBJECTIVE: The geometrical and mechanical properties that characterise the cartilage contact gap are uncertain and spatially varied. To date the effects of such uncertainties on cartilage lubrication have not been explored. Using a probabilistic approach, the purpose of this study is to numerically investigate the influence of surficial cartilage glycoaminoglycan (GAG) content on joint lubrication behaviour. Gap asperity stiffness and polymer brush border (PBB) thickness are affected by the uncertainty of surficial GAG concentration, and so their correlated effects in maintaining hydrodynamic joint lubrication are investigated. METHODS: Correlated sampling data are first generated by Monte Carlo simulation. These data are used as inputs for the cartilage contact model, which includes three distinctive features of cartilage tissue (tension-compression nonlinearity, aggrecan dependent permeability and compressive modulus) and fluid flow resistance effects of PBB on cartilage surface. The degree of hydrodynamic lubrication after thirty minutes of constant loading is used as an indicator for assessing the lubrication performance at the contact interface. RESULTS: The increase of PBB thickness with GAG concentration enhances the hydrodynamic lubrication component in the cartilage contact gap, whereas increasing the asperity stiffness with GAG concentration impairs hydrodynamic lubrication. GAG loss rate increases with the rise of GAG concentration. More aggrecan shedding through the surface could result in a thicker and denser PBB, and therefore enhance the lubrication performance in mixed-mode regime. On the other hand, higher GAG content makes the asperities stiffer, which may impede contact gap closure, and thus encourage gap fluid loss and impair the lubrication performance of cartilage. CONCLUSION: The lubrication performance of cartilage varies with the physiological conditions of the joint. Since a range of variables are internally related, the outcomes on joint lubrication are difficult to predict. A probabilistic approach accounting for the uncertainties can potentially result in more accurate evaluations of joint lubrication performance.


Assuntos
Cartilagem Articular , Hidrodinâmica , Lubrificação , Pressão , Estresse Mecânico
20.
Emerg Infect Dis ; 26(12): 2872-2880, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32990563

RESUMO

To investigate potential transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) during a domestic flight within Australia, we performed epidemiologic analyses with whole-genome sequencing. Eleven passengers with PCR-confirmed SARS-CoV-2 infection and symptom onset within 48 hours of the flight were considered infectious during travel; 9 had recently disembarked from a cruise ship with a retrospectively identified SARS-CoV-2 outbreak. The virus strain of those on the cruise and the flight was linked (A2-RP) and had not been previously identified in Australia. For 11 passengers, none of whom had traveled on the cruise ship, PCR-confirmed SARS-CoV-2 illness developed between 48 hours and 14 days after the flight. Eight cases were considered flight associated with the distinct SARS-CoV-2 A2-RP strain; the remaining 3 cases (1 with A2-RP) were possibly flight associated. All 11 passengers had been in the same cabin with symptomatic persons who had culture-positive A2-RP virus strain. This investigation provides evidence of flight-associated SARS-CoV-2 transmission.


Assuntos
Viagem Aérea , COVID-19/transmissão , SARS-CoV-2/genética , Sequenciamento Completo do Genoma/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Austrália , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , Estudos Retrospectivos , Medição de Risco , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...