Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(39): e2221539120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37738299

RESUMO

Prions are self-propagating protein aggregates formed by specific proteins that can adopt alternative folds. Prions were discovered as the cause of the fatal transmissible spongiform encephalopathies in mammals, but prions can also constitute nontoxic protein-based elements of inheritance in fungi and other species. Prion propagation has recently been shown to occur in bacteria for more than a hundred cell divisions, yet a fraction of cells in these lineages lost the prion through an unknown mechanism. Here, we investigate prion propagation in single bacterial cells as they divide using microfluidics and fluorescence microscopy. We show that the propagation occurs in two distinct modes. In a fraction of the population, cells had multiple small visible aggregates and lost the prion through random partitioning of aggregates to one of the two daughter cells at division. In the other subpopulation, cells had a stable large aggregate localized to the pole; upon division the mother cell retained this polar aggregate and a daughter cell was generated that contained small aggregates. Extending our findings to prion domains from two orthologous proteins, we observe similar propagation and loss properties. Our findings also provide support for the suggestion that bacterial prions can form more than one self-propagating state. We implement a stochastic version of the molecular model of prion propagation from yeast and mammals that recapitulates all the observed single-cell properties. This model highlights challenges for prion propagation that are unique to prokaryotes and illustrates the conservation of fundamental characteristics of prion propagation.


Assuntos
Príons , Animais , Bactérias , Células Procarióticas , Divisão Celular , Padrões de Herança , Saccharomyces cerevisiae , Mamíferos
2.
bioRxiv ; 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36712035

RESUMO

Prions are self-propagating protein aggregates formed by specific proteins that can adopt alternative folds. Prions were discovered as the cause of the fatal transmissible spongiform encephalopathies in mammals, but prions can also constitute non-toxic protein-based elements of inheritance in fungi and other species. Prion propagation has recently been shown to occur in bacteria for more than a hundred cell divisions, yet a fraction of cells in these lineages lost the prion through an unknown mechanism. Here, we investigate prion propagation in single bacterial cells as they divide using microfluidics and fluorescence microscopy. We show that the propagation occurs in two distinct modes with distinct stability and inheritance characteristics. We find that the prion is lost through random partitioning of aggregates to one of the two daughter cells at division. Extending our findings to prion domains from two orthologous proteins, we observe similar propagation and loss properties. Our findings also provide support for the suggestion that bacterial prions can form more than one self-propagating state. We implement a stochastic version of the molecular model of prion propagation from yeast and mammals that recapitulates all the observed single-cell properties. This model highlights challenges for prion propagation that are unique to prokaryotes and illustrates the conservation of fundamental characteristics of prion propagation across domains of life.

3.
Phys Rev E ; 104(4-1): 044406, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34781497

RESUMO

Inferring functional relationships within complex networks from static snapshots of a subset of variables is a ubiquitous problem in science. For example, a key challenge of systems biology is to translate cellular heterogeneity data obtained from single-cell sequencing or flow-cytometry experiments into regulatory dynamics. We show how static population snapshots of covariability can be exploited to rigorously infer properties of gene expression dynamics when gene expression reporters probe their upstream dynamics on separate timescales. This can be experimentally exploited in dual-reporter experiments with fluorescent proteins of unequal maturation times, thus turning an experimental bug into an analysis feature. We derive correlation conditions that detect the presence of closed-loop feedback regulation in gene regulatory networks. Furthermore, we show how genes with cell-cycle-dependent transcription rates can be identified from the variability of coregulated fluorescent proteins. Similar correlation constraints might prove useful in other areas of science in which static correlation snapshots are used to infer causal connections between dynamically interacting components.


Assuntos
Regulação da Expressão Gênica , Redes Reguladoras de Genes , Ciclo Celular , Retroalimentação , Expressão Gênica
4.
Sci Total Environ ; 697: 134114, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31487592

RESUMO

Ammonia (NH3) volatilization is considered as one of the major mechanisms responsible for the loss of nitrogen (N) from soil-plant systems worldwide. This study investigated the effect of biochar amendment to a calcareous soil (pH 7.8) on NH3 volatilization and plant N uptake. In particular, the effect of biochar's feedstock and application rate on both NH3 volatilization and plant growth were quantified using a specially designed closed chamber system. Two well-characterized biochars prepared from poultry manure (PM-BC) and green waste compost (GW-BC) were applied to the soil (0, 0.5, 1, 1.5 and 2% w/w equivalent to 0, 7.5, 15, 22 and 30 t ha-1) and wheat (Triticum aestivum, variety: Calingiri) was grown for 30 days. Both PM-BC and GW-BC decreased NH3 volatilization to a similar degree (by 47 and 38%, respectively), in the soil-plant system compared to the unamended control. Higher plant biomass production of up to 70% was obtained in the closed chamber systems with the addition of biochar. The increase in plant biomass was due to the reduction in N loss as NH3 gas, thereby increasing the N supply to the plants. Plant N uptake was improved by as much as 58% with biochar addition when additional NPK nutrients were supplied to the soil. This study demonstrates that the application of biochars can mitigate NH3 emission from calcareous agricultural cropping soil and that the retained N is plant-available and can improve wheat biomass yield.


Assuntos
Amônia/química , Carvão Vegetal/química , Fertilizantes/análise , Desenvolvimento Vegetal , Concentração de Íons de Hidrogênio , Solo/química
5.
Environ Sci Technol ; 53(19): 11486-11495, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31460750

RESUMO

Lead (Pb) exposure from household dust is a major childhood health concern because of its adverse impact on cognitive development. This study investigated the absorption kinetics of Pb from indoor dust following a single dose instillation into C57BL/6 mice. Blood Pb concentration (PbB) was assessed over 24 h, and the dynamics of particles in the lung and gastro-intestinal (GI) tract were visualized using X-ray fluorescence (XRF) microscopy. The influence of mineralogy on Pb absorption and particle retention was investigated using X-ray absorption near-edge structure spectroscopy. A rapid rise in PbB was observed between 0.25 and 4 h after instillation, peaking at 8 h and slowly declining during a period of 24 h. Following clearance from the lungs, Pb particles were detected in the stomach and small intestine at 4 and 8 h, respectively. Analysis of Pb mineralogy in the residual particles in tissues at 8 h showed that mineral-sorbed Pb and Pb-phosphates dominated the lung, while organic-bound Pb and galena were the main phases in the small intestines. This is the first study to visualize Pb dynamics in the lung and GI tract using XRF microscopy and link the inhalation and ingestion pathways for metal exposure assessment from dust.


Assuntos
Poeira , Animais , Disponibilidade Biológica , Camundongos , Camundongos Endogâmicos C57BL , Espectroscopia por Absorção de Raios X , Raios X
6.
Environ Int ; 131: 104967, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31284111

RESUMO

In this study, an in vitro in vivo correlation (IVIVC) between Pb in vitro bioaccessibility (IVBA) and relative bioavailability (RBA) was explored to determine whether the efficacy of Pb immobilization in phosphate amended soils could be predicted using an in vitro approach. Mining/smelting impacted soil from Broken Hill, Australia (582-3536 mg/kg of Pb in the <250 µm soil particle fraction) was amended with Phosphoric Acid (PA), Mono Ammonium Phosphate (MAP) or Triple Super Phosphate (TSP) at Pb:P molar ratios of 1:1-1:5. Pb speciation in pre- and post-treated soil was assessed using X-ray Absorption Spectroscopy (XAS), Pb IVBA was measured using the Solubility Bioaccessibility Research Consortium (SBRC) assay (gastric and intestinal phases), and Pb RBA was determined in mice using blood Pb concentration as the bioavailability endpoint. XAS analysis revealed a 3.75-6.00 fold increase in the weighted % of Pb phosphates in soil containing >1000 mg/kg Pb while treatment effect ratios of 0.89-0.99 (SBRC-G), 0.09-0.71 (SBRC-I) and 0.27-0.80 (RBA) were observed in PA amended soil (Pb:P = 1:5). Although significant (p < 0.05) correlation were obtained between Pb RBA and IVBA (%) determined using SBRC-G (r = 0.64) and SBRC-I (r = 0.67), the strengths of the relationships were weak (r2 = 0.41-0.45). This research highlights the complexities associated with the prediction of Pb RBA in phosphate amended soil.


Assuntos
Chumbo/farmacocinética , Fosfatos/química , Poluentes do Solo/química , Animais , Bioensaio , Disponibilidade Biológica , Chumbo/sangue , Chumbo/química , Camundongos , Mineração , Solo/química , Poluentes do Solo/farmacocinética , Solubilidade , Incerteza
7.
Environ Sci Technol ; 53(17): 10329-10341, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31356748

RESUMO

This study compared lead (Pb) immobilization efficacies in mining/smelting impacted soil using phosphate and iron amendments via ingestion and inhalation pathways using in vitro and in vivo assays, in conjunction with investigating the dynamics of dust particles in the lungs and gastro-intestinal tract via X-ray fluorescence (XRF) microscopy. Phosphate amendments [phosphoric acid (PA), hydroxyapatite, monoammonium phosphate (MAP), triple super phosphate (TSP), and bone meal biochar] and hematite were applied at a molar ratio of Pb:Fe/P = 1:5. Pb phosphate formation was investigated in the soil/post-in vitro bioaccessibility (IVBA) residuals and in mouse lung via extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structures (XANES) spectroscopy, respectively. EXAFS analysis revealed that anglesite was the dominant phase in the ingestible (<250 µm) and inhalable (<10 µm) particle fractions. Pb IVBA was significantly reduced (p < 0.05) by phosphate amendments in the <250 µm fraction (solubility bioaccessibility research consortium assay) and by PA, MAP, and TSP in the <10 µm fraction (inhalation-ingestion bioaccessibility assay). A 21.1% reduction in Pb RBA (<250 µm fraction) and 56.4% reduction in blood Pb concentration (<10 µm fraction) were observed via the ingestion and inhalation pathways, respectively. XRF microscopy detected Pb in the stomach within 4 h, presumably via mucociliary clearance.


Assuntos
Poluentes do Solo , Animais , Disponibilidade Biológica , Ferro , Camundongos , Fosfatos , Solo
8.
Chemosphere ; 212: 755-767, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30179840

RESUMO

Soil contamination with total petroleum hydrocarbons (TPH) is widespread throughout the globe due to the massive production of TPH anthropogenically and its occurrence in the soil. TPH is toxic to beneficial soil organisms and humans and thus has become a serious concern among the public. Traditionally TPH toxicity in the soil is estimated based on chemical fractions and a range of bioassays including plants, invertebrates and microorganisms. There is a large inconsistency among ecotoxicology data using these assays due to the nature of TPH and their weathering. Therefore, in this article, we critically reviewed the weathered conditions of TPH, the potential fate in soil and the bioindicators for the assessment of the ecotoxicity. Based on the current research and the state-of-the-art problem, we also highlighted key recommendations for future research scope for the real-world solution of the ecotoxicological studies of hydrocarbons.


Assuntos
Hidrocarbonetos/toxicidade , Poluição por Petróleo/análise , Petróleo/toxicidade , Animais , Ecotoxicologia , Hidrocarbonetos/química , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
9.
Ecotoxicol Environ Saf ; 156: 434-442, 2018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-29604472

RESUMO

In the ecotoxicological assessment of petroleum hydrocarbon-contaminated soil, microbial community profile is important aspect due to their involvement in soil functions. However, soil physicochemical properties and the inhabiting plants could dictate the microbial composition. A question remains unanswered is, how an integrated approach may be utilized to account for various contrasting soil properties, plant types (reference vs. native) and the nature of the hydrocarbon contamination. In this study, we utilized bacterial DNA profiling techniques to investigate the relationship between soil properties, contaminant and plant species. Results identified that Proteobacteria and Actinobacteria were the most abundant bacteria of the 45 phyla identified in the hydrocarbon-contaminated soil. The bulk and rhizosphere microbiome showed that the contaminated soil originally had quite distinct bacterial communities compared to the artificially contaminated soil (mine soil = 95 genera vs. other soils = 2-29 genera). In these cases, not significantly but the native plant slightly increased bacterial diversity and relative abundance in the same soils. Also, within each site, the bacterial community was significantly altered with the hydrocarbon concentration. In this instance, the influence of the contaminant was strong and also with the soil pH and organic matter. These results would significantly contribute to the novel insights on the molecular technique-based hydrocarbon toxicity assessment and the development of the further integrative approach with other microbial community and their metabolic profile in the contaminated sites.


Assuntos
Hidrocarbonetos/análise , Rizosfera , Microbiologia do Solo , Poluentes do Solo/análise , Solo/química , Actinobacteria/isolamento & purificação , Austrália , Biomassa , DNA Bacteriano/isolamento & purificação , Perfilação da Expressão Gênica , Metagenômica , Petróleo/análise , Proteobactérias/isolamento & purificação , RNA Ribossômico 16S/isolamento & purificação
10.
Sci Total Environ ; 627: 942-950, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29426218

RESUMO

Ammonia (NH3) volatilisation is one of the most important causes of nitrogen (N) loss in soil-plant systems worldwide. Carbon-based amendments such as biochar have been shown to mitigate NH3 volatilisation in agricultural soils to various degrees. In this study, we investigated the influence of biochar feedstocks (poultry manure, green waste compost, and wheat straw), pyrolysis temperatures (250, 350, 450, 500 and 700°C) and application rates (1 and 2%), on NH3 volatilisation from a calcareous soil. The 15 biochars were chemically characterized, and a laboratory incubation study was conducted to assess NH3 volatilisation from the soil over a period of four weeks. Furthermore, changes to the bacterial and fungal communities were assessed via sequencing of phylogenetic marker genes. The study showed that biochar feedstock sources, pyrolysis temperature, and application rates all affected NH3 volatilisation. Overall, low pyrolysis temperature biochars and higher biochar application rates achieved greater reductions in NH3 volatilisation. A feedstock related effect was also observed, with poultry manure biochar reducing NH3 volatilisation by an average of 53% in comparison to 38% and 35% reductions for biochar from green waste compost and wheat straw respectively. Results indicate that the biogeochemistry underlying biochar-mediated reduction in NH3 volatilisation is complex and caused by changes in soil pH, NH3 sorption and microbial community composition (especially ammonia oxidising guilds).

11.
Environ Pollut ; 233: 348-355, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29096308

RESUMO

In vitro assays act as surrogate measurements of relative bioavailability (RBA) for inorganic contaminants. The values derived from these assays are routinely used to refine human health risk assessments (HHRA). Extensive in vitro research has been performed on three major inorganic contaminants; As, Cd and Pb. However, the majority of these studies have evaluated the contaminants individually, even in cases when they are found as co-contaminants. Recently, in vivo studies (animal model) have determined that when the three aforementioned contaminants are present in the same soil matrix, they have the ability to influence each other's individual bioavailability. Since in vitro assays are used to inform HHRA, this study investigated whether bioaccessibility methods including the Solubility/Bioavailability Research Consortium (SBRC) assay, and physiologically based extraction test (PBET), have the ability to detect interactions between As, Cd and Pb. Using a similar dosing methodology to recently published in vivo studies, spiked aged (12 years) soil was assessed by evaluating contaminant bioaccessibility individually, in addition to tertiary combinations. In two spiked aged soils (grey and brown chromosols), there was no influence on contaminant bioaccessibility when As, Cd and Pb we present as co-contaminants. However, in a red ferrosol, the presence of As and Pb significantly decreased (p < 0.05) the bioaccessibility of Cd when assessed using gastric and intestinal phases of the SBRC assay and the PBET. Conceivable, differences in key physico-chemical properties (TOC, Fe, Al, P) between the study soils influenced contaminant interactions and bioaccessibility outcomes. Although bioaccessibility methods may not account for interactions between elements as demonstrated in in vivo models, in vitro assessment provides a conservative prediction of contaminant RBA under co-contaminant scenarios.


Assuntos
Bioensaio/métodos , Compostos Inorgânicos/análise , Poluentes do Solo/análise , Animais , Modelos Animais de Doenças , Compostos Inorgânicos/química , Compostos Inorgânicos/toxicidade , Mucosa Intestinal/metabolismo , Projetos de Pesquisa , Medição de Risco , Solo/química , Poluentes do Solo/química , Poluentes do Solo/toxicidade , Solubilidade , Estômago/química
12.
Nature ; 547(7661): 84-88, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28682337

RESUMO

Oceanic crust is created by the extraction of molten rock from underlying mantle at the seafloor 'spreading centres' found between diverging tectonic plates. Modelling studies have suggested that mantle melting can occur through decompression as the mantle flows upwards beneath spreading centres, but direct observation of this process is difficult beneath the oceans. Continental rifts, however-which are also associated with mantle melt production-are amenable to detailed measurements of their short-term kinematics using geodetic techniques. Here we show that such data can provide evidence for an upwelling mantle flow, as well as information on the dimensions and timescale of mantle melting. For North Island, New Zealand, around ten years of campaign and continuous GPS measurements in the continental rift system known as the Taupo volcanic zone reveal that it is extending at a rate of 6-15 millimetres per year. However, a roughly 70-kilometre-long segment of the rift axis is associated with strong horizontal contraction and rapid subsidence, and is flanked by regions of extension and uplift. These features fit a simple model that involves flexure of an elastic upper crust, which is pulled downwards or pushed upwards along the rift axis by a driving force located at a depth greater than 15 kilometres. We propose that flexure is caused by melt-induced episodic changes in the vertical flow forces that are generated by upwelling mantle beneath the rift axis, triggering a transient lower-crustal flow. A drop in the melt fraction owing to melt extraction raises the mantle flow viscosity and drives subsidence, whereas melt accumulation reduces viscosity and allows uplift-processes that are also likely to occur in oceanic spreading centres.

13.
Sci Total Environ ; 595: 660-665, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28407582

RESUMO

In this study, the influence of sample matrix on the relative bioavailability of arsenic (As), cadmium (Cd) and lead (Pb) was assessed following exposure of C57BL/6 mice to spiked aged (12years) soils. AIN93G mouse chow was amended with individual and tertiary As, Cd and Pb soil combinations which were administered to mice over a 9day exposure period. Contaminant relative bioavailability was calculated by comparing As urinary excretion and Cd-kidney/Pb-liver accumulation to corresponding values for compounds used to derive the respective toxicity reference value. Strong linear dose-responses were observed for mice exposed to AIN93G mouse chow augmented with individually spiked soil with As, Cd and Pb. When mice were exposed to co-contaminants, As relative bioavailability (RBA) decreased similar to results from previous co-contaminant salt experiments presumably due to the influence of Cd on phosphate transport proteins, which are utilized for As absorption. However, a decrease in Cd-kidney and Pb-liver accumulation was also observed following co-co-exposure. It was postulated that this resulted from interactions with other (essential) metals (e.g. iron, aluminium, manganese, magnesium) within the soil matrix and their influence on absorption via divalent metal transporters.


Assuntos
Arsênio/farmacocinética , Cádmio/farmacocinética , Chumbo/farmacocinética , Poluentes do Solo/farmacocinética , Animais , Disponibilidade Biológica , Rim/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Solo , Urinálise
14.
Sci Total Environ ; 574: 1054-1074, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27672736

RESUMO

Inhalation of metal(loid)s in ambient particulate matter (APM) represents a significant exposure pathway to humans. Although exposure assessment associated with this pathway is currently based on total metal(loid) content, a bioavailability (i.e. absorption in the systemic circulation) and/or bioaccessibility (i.e. solubility in simulated lung fluid) based approach may more accurately quantify exposure. Metal(loid) bioavailability-bioaccessibility assessment from APM is inherently complex and lacks consensus. This paper reviews the discrepancies that impede the adoption of a universal protocol for the assessment of inhalation bioaccessibility. Exposure assessment approaches for in-vivo bioavailability, in-vitro cell culture and in-vitro bioaccessibility (composition of simulated lungs fluid, physico-chemical and methodological considerations) are critiqued in the context of inhalation exposure refinement. An important limitation of bioavailability and bioaccessibility studies is the use of considerably higher than environmental metal(loid) concentration, which diminishing their relevance to human exposure scenarios. Similarly, individual metal(loid) studies have been criticised due to complexities of APM metal(loid) mixtures which may impart synergistic or antagonistic effects compared to single metal(loid) exposure. Although a number of different simulated lung fluid (SLF) compositions have been used in metal(loid) bioaccessibility studies, information regarding the comparative leaching efficiency among these different SLF and comparisons to in-vivo bioavailability data is lacking. In addition, the particle size utilised is often not representative of what is deposited in the lungs while assay parameters (extraction time, solid to liquid ratio, temperature and agitation) are often not biologically relevant. Research needs are identified in order to develop robust in-vitro bioaccessibility protocols for the assessment or prediction of metal(loid) bioavailability in APM for the refinement of inhalation exposure.


Assuntos
Poeira , Exposição por Inalação , Metais/análise , Material Particulado/análise , Disponibilidade Biológica , Humanos
15.
Chemosphere ; 168: 658-666, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27836265

RESUMO

Incidental ingestion of contaminated soil and dust is a major pathway for human exposure to many inorganic contaminants. To date, exposure research has focused on arsenic (As), cadmium (Cd) and lead (Pb), however, these studies have typically assessed metal(loid) bioavailability individually, even when multiple elements are present in the same matrix. As a consequence, it is unclear whether interactions between these elements occur within the gastro-intestinal tract, which may impact absorption and accumulation. In this study, the influence of contaminant co-exposure was assessed using a mouse bioassay and soluble forms of As, Cd and Pb supplied in mouse chow as individual, binary and tertiary elemental combinations. Arsenic urinary excretion and Pb-liver accumulation were unaffected by As-Pb co-exposure (1-10 mg As kg-1 and 3-30 mg Pb kg-1) while Cd-kidney accumulation was unaffected by the presence of As and/or Pb. However, Cd co-exposure decreased As urinary excretion and increased Pb-liver accumulation. It was hypothesized that Cd influenced arsenate absorption as a consequence of the impairment of phosphate transporters. Although the reason for increasing Pb-liver accumulation following Cd co-exposure is unclear, enhanced Pb accumulation may occur as a result of transport protein overexpression or changes in divalent metal compartmentalization.


Assuntos
Arsênio/metabolismo , Cádmio/metabolismo , Poluentes Ambientais/metabolismo , Chumbo/metabolismo , Absorção Fisiológica , Animais , Arsênio/toxicidade , Arsênio/urina , Disponibilidade Biológica , Cádmio/toxicidade , Cádmio/urina , Relação Dose-Resposta a Droga , Interações Medicamentosas , Poluentes Ambientais/toxicidade , Poluentes Ambientais/urina , Feminino , Trato Gastrointestinal/metabolismo , Humanos , Rim/metabolismo , Chumbo/toxicidade , Chumbo/urina , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Tecidual
16.
Environ Sci Technol ; 50(23): 13086-13094, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27934280

RESUMO

In this study, the in vitro bioaccessibility (IVBA) of lead (Pb) in phosphate-amended Pb-contaminated soil was assessed using a variety of IVBA assays with an overarching aim of determining whether changes in Pb IVBA were congruent to those observed for Pb relative bioavailability (RBA) determined using an in vivo mouse assay. Amending soil with phosphoric acid or rock phosphate resulted in changes in Pb speciation, however, varying Pb IVBA results were obtained depending on the methodology utilized. In addition, IVBA assays influenced Pb speciation as a consequence of interactions between dissolved Pb and unreacted phosphate arising from the amendment or from assay constituents. When the relationship between Pb RBA and IVBA was assessed, a comparison of treatment effect ratios (Pb RBA or IVBA in treated soil divided by Pb RBA or IVBA for untreated soil) provided the best in vivo-in vitro correlation particular for SBRC (r2 = 0.83) and IVG (r2 = 0.89) intestinal extraction. For these assays, the slope of the lines of best fit were close to 1 (1.12, 0.82; SBRC, IVG intestinal extraction respectively) with small y-intercepts (0.09, 0.08 respectively) indicating that the efficacy of phosphate amendments for reducing Pb RBA may be predicted using IVBA assays.


Assuntos
Disponibilidade Biológica , Solo , Animais , Chumbo , Fosfatos , Poluentes do Solo
17.
Arch Environ Contam Toxicol ; 71(4): 561-571, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27722931

RESUMO

Earthworm toxicity assays contribute to ecological risk assessment and consequently standard toxicological endpoints, such as mortality and reproduction, are regularly estimated. These endpoints are not enough to better understand the mechanism of toxic pollutants. We employed an additional endpoint in the earthworm Eisenia andrei to estimate the pollutant-induced stress. In this study, comet assay was used as an additional endpoint to evaluate the genotoxicity of weathered hydrocarbon contaminated soils containing 520 to 1450 mg hydrocarbons kg-1 soil. Results showed that significantly higher DNA damage levels (two to sixfold higher) in earthworms exposed to hydrocarbon impacted soils. Interestingly, hydrocarbons levels in the tested soils were well below site-specific screening guideline values. In order to explore the reasons for observed toxicity, the contaminated soils were leached with rainwater and subjected to earthworm tests, including the comet assay, which showed no DNA damage. Soluble hydrocarbon fractions were not found originally in the soils and hence no hydrocarbons leached out during soil leaching. The soil leachate's Electrical Conductivity (EC) decreased from an average of 1665 ± 147 to 204 ± 20 µS cm-1. Decreased EC is due to the loss of sodium, magnesium, calcium, and sulphate. The leachate experiment demonstrated that elevated salinity might cause the toxicity and not the weathered hydrocarbons. Soil leaching removed the toxicity, which is substantiated by the comet assay and soil leachate analysis data. The implication is that earthworm comet assay can be included in future eco (geno) toxicology studies to assess accurately the risk of contaminated soils.


Assuntos
Ensaio Cometa/métodos , Hidrocarbonetos/toxicidade , Oligoquetos/fisiologia , Petróleo/toxicidade , Poluentes do Solo/toxicidade , Animais , Monitoramento Ambiental , Poluição por Petróleo
18.
Environ Res ; 150: 482-488, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27423050

RESUMO

In this study, the bioavailability of DDTr (sum of DDT, DDD and DDE isomers) in pesticide-contaminated soil was assessed using an in vivo mouse model. DDTr relative bioavailability (RBA) ranged from 18.7±0.9 (As35) to 60.8±7.8% (As36) indicating that a significant portion of soil-bound DDTr was not available for absorption following ingestion. When DDTr bioaccessibility was assessed using the organic Physiologically Based Extraction Test (org-PBET), the inclusion of a sorption sink (silicone cord) enhanced DDTr desorption by up to 20-fold (1.6-3.8% versus 18.9-56.3%) compared to DDTr partitioning into gastrointestinal fluid alone. Enhanced desorption occurred as a result of the silicone cord acting as a reservoir for solubilized DDTr to partition into, thereby creating a flux for further desorption until equilibrium was achieved. When the relationship between in vivo and in vitro data was assessed, a strong correlation was observed between the mouse bioassay and the org-PBET+silicone cord (slope=0.94, y-intercept=3.5, r(2)=0.72) suggesting that the in vitro approach may provide a robust surrogate measure for the prediction of DDTr RBA in contaminated soil.


Assuntos
DDT , Inseticidas , Poluentes do Solo , Tecido Adiposo/metabolismo , Administração Oral , Adsorção , Animais , Disponibilidade Biológica , DDT/análise , DDT/química , DDT/farmacocinética , Feminino , Inseticidas/análise , Inseticidas/química , Inseticidas/farmacocinética , Rim/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos BALB C , Silicones/química , Poluentes do Solo/análise , Poluentes do Solo/química , Poluentes do Solo/farmacocinética
19.
J Hazard Mater ; 313: 130-7, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27060218

RESUMO

Mine-impacted materials were collected from Victoria, Australia and categorized into three source materials; tailings (n=35), calcinated (n=10) and grey slimes (n=5). Arsenic (As) concentrations in these materials varied over several orders of magnitude (30-47,000mgkg(-1)), with median concentrations of 500, 10,800 and 1500mgkg(-1), respectively. When As bioaccessibility was assessed using the Solubility Bioaccessibility Research Consortium (SBRC) assay, As bioaccessibility ranged between 4 and 90%, with mean gastric phase values of 30%, 49% and 82% for tailings, calcinated and grey slimes, respectively. An analysis of variance (ANOVA) determined that As bioaccessibility was significantly different (P<0.05) between source materials. This was due to differences in As mineralogy, soil particle size as well as the concentration and nature of Fe present. X-ray Absorption Near Edge Structure (XANES) analysis identified arseniosiderite, yukonite, realgar, loellingite and mineral sorbed arsenate species in mine-impacted materials. Despite differences in physicochemical properties, 'mine wastes' are often reported under a generic descriptor. Outcomes from this research highlight that variability in As bioaccessibility can be prescribed to As mineralogy and matrix physicochemical properties, while categorizing samples into sub-groups can provide some notional indication of potential exposure.


Assuntos
Arsênio/análise , Mineração , Poluentes do Solo/análise , Austrália , Disponibilidade Biológica , Tamanho da Partícula , Solo
20.
Environ Res ; 145: 145-153, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26697808

RESUMO

PAH bioaccessibility in contaminated soil was determined using the organic physiologically based extraction test with the inclusion of a sorption sink. Silicone cord was incorporated into the assay in order to overcome the limited capacity of the in vitro medium to accommodate desorbable PAHs. Initially, silicone cord sorption efficacy was determined by assessing sorption kinetics using PAH-spiked sand (phenanthrene, pyrene and benzo[a]pyrene; 10-1000mgkg(-1)). Irrespective of PAH and concentration, >95% of the initial PAH mass partitioned into the silicone cord within 12h although rates were lower at higher concentration and with increasing hydrophobicity. When PAH bioaccessibility was assessed in contaminated soil (n=18), contamination source (i.e. pyrogenic versus petrogenic) influenced PAH bioaccessibility. Individual PAH bioaccessibility ranged up to 81.7±2.7% although mean values ranged from 2.1 (acenaphthalene) to 20.8% (benzo[k]fluoranthene) with upper 95% confidence intervals of the means of 4.5 and 28.3% respectively. Although a PAH in vivo-in vitro correlation is yet to be established, bioaccessibility approaches incorporating sorption sinks represent a robust approach for estimating PAH bioavailability as the desorbable fraction may be a conservative measure of the absorbable fraction.


Assuntos
Ingestão de Alimentos , Exposição Ambiental/análise , Modelos Biológicos , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes do Solo/análise , Acidentes , Disponibilidade Biológica , Humanos , Hidrocarbonetos Policíclicos Aromáticos/farmacocinética , Poluentes do Solo/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...