Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Indian Dermatol Online J ; 12(1): 147-149, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33768038

RESUMO

Hidradenitis suppurativa is a chronic relapsing disease with multiple abscesses, nodules, and scars in the apocrine bearing areas. Dowling-Degos is a rare autosomal dominant genodermatosis characterized by multiple hyperpigmented macules or papules in reticulate pattern, affecting mainly the flexures. We report a case of coexisting hidradenitis suppurativa and Dowling-Degos disease in a 31-year-old male in whom PSENEN mutation analysis revealed a splice site mutation c.62-1G>T.

5.
Maedica (Bucur) ; 12(2): 123-126, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29090033

RESUMO

Pachyonychia congenita (PC) is a rare autosomal dominant skin disorder, with unknown prevalence, although it is estimated there are between 2,000 and 10,000 cases of PC worldwide. The International PC Research Registry (IPCRR) has currently identified (as of November 2016) 746 individuals (in 403 families) with genetically confirmed PC. Heterozygous mutations, predominantly missense mutations, in any one of five keratin genes, KRT6A, KRT6B, KRT6C, KRT16, or KRT17 cause PC. The predominant clinical findings include plantar keratoderma, plantar pain and variable dystrophy of some or all toenails and/ or fingernails. Oral leukokeratosis, follicular hyperkeratosis, cysts of various types and natal teeth may also be present. We report the first case of genetically confirmed PC from Romania due to a mutation in KRT6A, p.Arg466Pro.

6.
J Am Podiatr Med Assoc ; 107(5): 428-435, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29077501

RESUMO

Plantar keratodermas can arise due to a variety of genetically inherited mutations. The need to distinguish between different plantar keratoderma disorders is becoming increasingly apparent because there is evidence that they do not respond identically to treatment. Diagnosis can be aided by observation of other clinical manifestations, such as palmar keratoderma, more widespread hyperkeratosis of the epidermis, hair and nail dystrophies, or erythroderma. However, there are frequent cases of plantar keratoderma that occur in isolation. This review focuses on the rare autosomal dominant keratin disorder pachyonychia congenita, which presents with particularly painful plantar keratoderma for which there is no specific treatment. Typically, patients regularly trim/pare/file/grind their calluses and file/grind/clip their nails. Topical agents, including keratolytics (eg, salicylic acid, urea) and moisturizers, can provide limited benefit by softening the skin. For some patients, retinoids help to thin calluses but may lead to increased pain. This finding has stimulated a drive for alternative treatment options, from gene therapy to alternative nongenetic methods that focus on novel findings regarding the pathogenesis of pachyonychia congenita and the function of the underlying genes.


Assuntos
Ceratodermia Palmar e Plantar/diagnóstico , Ceratodermia Palmar e Plantar/epidemiologia , Ceratodermia Palmar e Plantar/terapia , Paquioníquia Congênita/epidemiologia , Paquioníquia Congênita/terapia , Comorbidade , Gerenciamento Clínico , Feminino , Humanos , Ceratodermia Palmar e Plantar/psicologia , Masculino , Paquioníquia Congênita/diagnóstico , Manejo da Dor , Prognóstico , Qualidade de Vida , Medição de Risco , Índice de Gravidade de Doença , Papel do Doente
7.
Indian J Dermatol ; 62(4): 422-426, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28794556

RESUMO

Pachyonychia congenita (PC) is a rare autosomal dominant genetic skin disorder due to a mutation in any one of the five keratin genes, KRT6A, KRT6B, KRT6C, KRT16, or KRT17. The main features are palmoplantar keratoderma, plantar pain, and nail dystrophy. Cysts of various types, follicular hyperkeratosis, oral leukokeratosis, hyperhidrosis, and natal teeth may also be present. Four unrelated Indian families presented with a clinical diagnosis of PC. This was confirmed by genetic testing; mutations in KRT17 were identified in all affected individuals.

11.
Hum Mol Genet ; 25(6): 1176-91, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26758872

RESUMO

Meesmann epithelial corneal dystrophy (MECD) is a rare autosomal dominant disorder caused by dominant-negative mutations within the KRT3 or KRT12 genes, which encode the cytoskeletal protein keratins K3 and K12, respectively. To investigate the pathomechanism of this disease, we generated and phenotypically characterized a novel knock-in humanized mouse model carrying the severe, MECD-associated, K12-Leu132Pro mutation. Although no overt changes in corneal opacity were detected by slit-lamp examination, the corneas of homozygous mutant mice exhibited histological and ultrastructural epithelial cell fragility phenotypes. An altered keratin expression profile was observed in the cornea of mutant mice, confirmed by western blot, RNA-seq and quantitative real-time polymerase chain reaction. Mass spectrometry (MS) and immunohistochemistry demonstrated a similarly altered keratin profile in corneal tissue from a K12-Leu132Pro MECD patient. The K12-Leu132Pro mutation results in cytoplasmic keratin aggregates. RNA-seq analysis revealed increased chaperone gene expression, and apoptotic unfolded protein response (UPR) markers, CHOP and Caspase 12, were also increased in the MECD mice. Corneal epithelial cell apoptosis was increased 17-fold in the mutant cornea, compared with the wild-type (P < 0.001). This elevation of UPR marker expression was also observed in the human MECD cornea. This is the first reporting of a mouse model for MECD that recapitulates the human disease and is a valuable resource in understanding the pathomechanism of the disease. Although the most severe phenotype is observed in the homozygous mice, this model will still provide a test-bed for therapies not only for corneal dystrophies but also for other keratinopathies caused by similar mutations.


Assuntos
Distrofia Corneana Epitelial Juvenil de Meesmann/genética , Queratina-12/genética , Queratina-3/genética , Mutação de Sentido Incorreto , Adulto , Animais , Apoptose/genética , Modelos Animais de Doenças , Éxons , Feminino , Heterozigoto , Humanos , Camundongos , Camundongos Transgênicos , Mutação , Linhagem , Resposta a Proteínas não Dobradas
13.
J Allergy Clin Immunol ; 136(5): 1268-76, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26073755

RESUMO

BACKGROUND: Severe dermatitis, multiple allergies, and metabolic wasting (SAM) syndrome is a recently recognized syndrome caused by mutations in the desmoglein 1 gene (DSG1). To date, only 3 families have been reported. OBJECTIVE: We studied a new case of SAM syndrome known to have no mutations in DSG1 to detail the clinical, histopathologic, immunofluorescent, and ultrastructural phenotype and to identify the underlying molecular mechanisms in this rare genodermatosis. METHODS: Histopathologic, electron microscopy, and immunofluorescent studies were performed. Whole-exome sequencing data were interrogated for mutations in desmosomal and other skin structural genes, followed by Sanger sequencing of candidate genes in the patient and his parents. RESULTS: No mutations were identified in DSG1; however, a novel de novo heterozygous missense c.1757A>C mutation in the desmoplakin gene (DSP) was identified in the patient, predicting the amino acid substitution p.His586Pro in the desmoplakin polypeptide. CONCLUSIONS: SAM syndrome can be caused by mutations in both DSG1 and DSP. Knowledge of this genetic heterogeneity is important for both analysis of patients and genetic counseling of families. This condition and these observations reinforce the importance of heritable skin barrier defects, in this case desmosomal proteins, in the pathogenesis of atopic disease.


Assuntos
Dermatite/genética , Desmoplaquinas/genética , Hipersensibilidade/genética , Mutação de Sentido Incorreto/genética , Síndrome de Emaciação/genética , Criança , Pré-Escolar , Análise Mutacional de DNA , Dermatite/diagnóstico , Desmogleína 1/genética , Progressão da Doença , Humanos , Hipersensibilidade/diagnóstico , Lactente , Recém-Nascido , Masculino , Linhagem , Estrutura Terciária de Proteína/genética , Pele/patologia , Síndrome de Emaciação/diagnóstico
14.
J Cutan Med Surg ; 19(1): 57-65, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25775665

RESUMO

BACKGROUND: Pachyonychia congenita (PC) is a rare but often debilitating, dominantly inherited disorder. New treatments require more accurate instruments for evaluating changes in the quality of life in these patients. OBJECTIVES: This study was undertaken to develop and validate a quality of life questionnaire for PC patients (PCQoL). METHODS: Relevant factors influencing quality of life in PC patients were identified and incorporated into the well-recognized, general questionnaire, the Dermatology Life Quality Index (DLQI), to establish a disease-specific measure, the PCQoL. Classical test theory (CTT) and Rasch analysis (RA) were used to analyze and validate the PCQoL. RESULTS: CTT analysis established test-retest reliability and internal consistency for the PCQoL. Concurrent and construct validity for the DLQI and the PCQoL were also validated. Chi-square-based infit and outfit statistics indicated that the Rasch model fits the observed responses very well. RA reconfirmed reliability, internal consistency, reasonable homogeneity, construct validity, and the presence of three RA-based domains. CONCLUSION: The PCQoL questionnaire is a measure validated by both CTT and RA. It appears to be a valuable tool in measuring quality of life modifications in PC individuals with keratoderma.


Assuntos
Paquioníquia Congênita/psicologia , Psicometria/métodos , Psicometria/normas , Adulto , Humanos , Modelos Estatísticos , Qualidade de Vida , Reprodutibilidade dos Testes , Inquéritos e Questionários , Adulto Jovem
15.
Am J Hum Genet ; 96(3): 440-7, 2015 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-25683118

RESUMO

Calpastatin is an endogenous specific inhibitor of calpain, a calcium-dependent cysteine protease. Here we show that loss-of-function mutations in calpastatin (CAST) are the genetic causes of an autosomal-recessive condition characterized by generalized peeling skin, leukonychia, acral punctate keratoses, cheilitis, and knuckle pads, which we propose to be given the acronym PLACK syndrome. In affected individuals with PLACK syndrome from three families of different ethnicities, we identified homozygous mutations (c.607dup, c.424A>T, and c.1750delG) in CAST, all of which were predicted to encode truncated proteins (p.Ile203Asnfs∗8, p.Lys142∗, and p.Val584Trpfs∗37). Immunohistochemistry shows that staining of calpastatin is reduced in skin from affected individuals. Transmission electron microscopy revealed widening of intercellular spaces with chromatin condensation and margination in the upper stratum spinosum in lesional skin, suggesting impaired intercellular adhesion as well as keratinocyte apoptosis. A significant increase of apoptotic keratinocytes was also observed in TUNEL assays. In vitro studies utilizing siRNA-mediated CAST knockdown revealed a role for calpastatin in keratinocyte adhesion. In summary, we describe PLACK syndrome, as a clinical entity of defective epidermal adhesion, caused by loss-of-function mutations in CAST.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Queilite/genética , Ceratose/genética , Mutação , Doenças da Unha/genética , Dermatopatias/genética , Adulto , Apoptose/genética , Proteínas de Ligação ao Cálcio/metabolismo , Adesão Celular/genética , Epiderme/metabolismo , Feminino , Homozigoto , Humanos , Marcação In Situ das Extremidades Cortadas , Queratinócitos , Masculino , Pessoa de Meia-Idade , Linhagem , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Pele/patologia
16.
Cell Tissue Res ; 360(3): 583-9, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25620412

RESUMO

Mutations in keratin genes cause a diverse spectrum of skin, hair and mucosal disorders. Cutaneous disorders include epidermolysis bullosa simplex, palmoplantar keratoderma, epidermolytic ichthyosis and pachyonychia congenita. Both clinical and laboratory observations confirm a major role for keratins in maintaining epidermal cell-cell adhesion. When normal tissue homeostasis is disturbed, for example, during wound healing and cancer, keratins play an important non-mechanical role. Post-translational modifications including glycosylation and phosphorylation of keratins play an important role in protection of epithelial cells from injury. Keratins also play a role in modulation of the immune response. A current focus in the area of keratins and disease is the development of new treatments including small inhibitory RNA (siRNA) to mutant keratins and small molecules to modulate keratin expression.


Assuntos
Queratinas/metabolismo , Dermatopatias/metabolismo , Animais , Fenômenos Biomecânicos , Doenças do Cabelo/metabolismo , Doenças do Cabelo/patologia , Doenças do Cabelo/terapia , Humanos , Queratinas/genética , Mutação/genética , Dermatopatias/patologia , Dermatopatias/terapia
17.
J Control Release ; 196: 355-62, 2014 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-25449884

RESUMO

Therapeutics based on short interfering RNAs (siRNAs), which act by inhibiting the expression of target transcripts, represent a novel class of potent and highly specific next-generation treatments for human skin diseases. Unfortunately, the intrinsic barrier properties of the skin combined with the large size and negative charge of siRNAs make epidermal delivery of these macromolecules quite challenging. To help evaluate the in vivo activity of these therapeutics and refine delivery strategies we generated an innovative reporter mouse model that predominantly expresses firefly luciferase (luc2p) in the paw epidermis--the region of murine epidermis that most closely models the tissue architecture of human skin. Combining this animal model with state-of-the-art live animal imaging techniques, we have developed a real-time in vivo analysis work-flow that has allowed us to compare and contrast the efficacies of a wide range nucleic acid-based gene silencing reagents in the skin of live animals. While inhibition was achieved with all of the reagents tested, only the commercially available "self-delivery" modified Accell-siRNAs (Dharmacon) produced potent and sustained in vivo gene silencing. Together, these findings highlight just how informative reliable reporter mouse models can be when assessing novel therapeutics in vivo. Using this work-flow, we developed a novel clinically-relevant topical formulation that facilitates non-invasive epidermal delivery of unmodified and "self-delivery" siRNAs. Remarkably, a sustained >40% luc2p inhibition was observed after two 1-hour treatments with Accell-siRNAs in our topical formulation. Importantly, our ability to successfully deliver siRNA molecules topically brings these novel RNAi-based therapeutics one-step closer to clinical use.


Assuntos
Inativação Gênica , Terapia Genética/métodos , RNA Interferente Pequeno/uso terapêutico , Administração Tópica , Animais , Química Farmacêutica , Sistemas de Liberação de Medicamentos , Epiderme/efeitos dos fármacos , Proteínas Filagrinas , Genes Reporter/efeitos dos fármacos , Humanos , Injeções Intradérmicas , Proteínas de Filamentos Intermediários/administração & dosagem , Proteínas de Filamentos Intermediários/genética , Camundongos , RNA Interferente Pequeno/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...