Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 19(9): e1010938, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37721956

RESUMO

mTORC1 (mechanistic target of rapamycin complex 1) is a metabolic sensor that promotes growth when nutrients are abundant. Ubiquitous inhibition of mTORC1 extends lifespan in multiple organisms but also disrupts several anabolic processes resulting in stunted growth, slowed development, reduced fertility, and disrupted metabolism. However, it is unclear if these pleiotropic effects of mTORC1 inhibition can be uncoupled from longevity. Here, we utilize the auxin-inducible degradation (AID) system to restrict mTORC1 inhibition to C. elegans neurons. We find that neuron-specific degradation of RAGA-1, an upstream activator of mTORC1, or LET-363, the ortholog of mammalian mTOR, is sufficient to extend lifespan in C. elegans. Unlike raga-1 loss of function genetic mutations or somatic AID of RAGA-1, neuronal AID of RAGA-1 robustly extends lifespan without impairing body size, developmental rate, brood size, or neuronal function. Moreover, while degradation of RAGA-1 in all somatic tissues alters the expression of thousands of genes, demonstrating the widespread effects of mTORC1 inhibition, degradation of RAGA-1 in neurons only results in around 200 differentially expressed genes with a specific enrichment in metabolism and stress response. Notably, our work demonstrates that targeting mTORC1 specifically in the nervous system in C. elegans uncouples longevity from growth and reproductive impairments, and that many canonical effects of low mTORC1 activity are not required to promote healthy aging. These data challenge previously held ideas about the mechanisms of mTORC1 lifespan extension and underscore the potential of promoting longevity by neuron-specific mTORC1 modulation.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Caenorhabditis elegans/metabolismo , Longevidade/genética , Complexos Multiproteicos/genética , Reprodução/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Mamíferos/metabolismo
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 3809-3813, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36086129

RESUMO

Whilst the electrocardiogram (ECG) is an essential tool for diagnosing cardiac electrical abnormalities, its characteristics are dependent on anatomical variability. Specifically variation in torso geometry affects relative positions of the leads with respect to the heart. We propose a novel pipeline that uses standard cardiac magnetic resonance images to reconstruct the torso and heart, and recreate the ECG considering torso and cardiac anatomy. This requires automated extraction of the torso contours. Our method combines an initial u-net segmenter with a second network that refines contours and removes spurious segments. The networks were evaluated on a cross validation study dataset and an independent test set. The use of two-channel input, including both original image and initial segmentation, in the refinement network significantly improved performance on the independent test set, reducing the Hausdorff distance from 9.1 pixels to 4.3 pixels and increasing Dice coefficient from 0.75 to 0.93. Clinical Relevance- This method can be utilized to allow ECG simulations with personalized torso geometry which has previously been demonstrated to significantly effect QRS parameters. A clinical tool can be developed using this method that accounts for torso geometry in ECG interpretation.


Assuntos
Coração , Procedimentos de Cirurgia Plástica , Eletrocardiografia , Coração/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Tórax
3.
Toxicol Sci ; 185(1): 38-49, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34718810

RESUMO

Inhaled chemical/material exposures are a ubiquitous part of daily life around the world. There is a need to evaluate potential adverse effects of both single and repeat exposures for thousands of chemicals and an exponentially larger number of exposure scenarios (eg, repeated exposures). Meeting this challenge will require the development and use of in vitro new approach methodologies (NAMs); however, 2 major challenges face the deployment of NAMs in risk assessment are (1) characterizing what apical outcome(s) acute assays inform regarding the trajectory to long-term events, especially under repeated exposure conditions, and (2) capturing interindividual variability as it informs considerations of potentially susceptible and/or vulnerable populations. To address these questions, we used a primary human bronchial epithelial cell air-liquid interface model exposed to ozone (O3), a model oxidant and ubiquitous environmental chemical. Here we report that O3-induced proinflammatory gene induction is attenuated in repeated exposures thus demonstrating that single acute exposure outcomes do not reliably represent the trajectory of responses after repeated or chronic exposures. Further, we observed 10.1-, 10.3-, 14.2-, and 7-fold ranges of induction of interleukin (IL)-8, IL-6, heme oxygenase 1, and cyclooxygenase 2 transcripts, respectively, within in our population of 25 unique donors. Calculation of sample size estimates that indicated that 27, 24, 299, and 13 donors would be required to significantly power similar in vitro studies to identify a 2-fold change in IL-8, IL-6, HMOX1, and cyclooxygenase 2 transcript induction, respectively, to inform considerations of the uncertainty factors to reflect variability within the human population for in vitro studies.


Assuntos
Ozônio , Células Epiteliais , Expressão Gênica , Humanos , Ozônio/toxicidade , Medição de Risco
4.
Transl Med Aging ; 4: 76-77, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33251397

RESUMO

To be a successful researcher, you are expected to have important skills beyond the bench such as being able to ask questions, talk about science with your peers, and organize scientific events. However, there is frequently little to no training or emphasis on these skills at the student and postdoc level. The virtual Aging Science Talks seminar series and Slack group have benefitted the scientific community in many ways amidst the chaos of coronavirus quarantines and lab shutdowns, but as a 2nd year PhD student, I was particularly excited about how this format was able to engage trainees. We should end the era of trainees sitting at the back of the room while PIs dominate discussions and Q&A sessions with speakers. Reflecting on the advantages of Aging Science Talks can show us how to make future scientific events more engaging and inclusive for everyone.

5.
Dev Cell ; 54(2): 196-211, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32619405

RESUMO

Aging is associated with a loss of metabolic homeostasis and plasticity, which is causally linked to multiple age-onset pathologies. The majority of the interventions-genetic, dietary, and pharmacological-that have been found to slow aging and protect against age-related disease in various organisms do so by targeting central metabolic pathways. However, targeting metabolic pathways chronically and ubiquitously makes it difficult to define the downstream effects responsible for lifespan extension and often results in negative effects on growth and health, limiting therapeutic potential. Insight into how metabolic signals are relayed between tissues, cells, and organelles opens up new avenues to target metabolic regulators locally rather than globally for healthy aging. In this review, we discuss the pro-longevity effects of targeting metabolic pathways in specific tissues and how these interventions communicate with distal cells to modulate aging. These studies may be crucial in designing interventions that promote longevity without negative health consequences.


Assuntos
Comunicação , Envelhecimento Saudável/fisiologia , Longevidade , Mitocôndrias/metabolismo , Envelhecimento/metabolismo , Animais , Humanos , Longevidade/efeitos dos fármacos , Longevidade/fisiologia , Redes e Vias Metabólicas/fisiologia
7.
EMBO Rep ; 20(12): e48395, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31667999

RESUMO

Mitochondria are organized in the cell in the form of a dynamic, interconnected network. Mitochondrial dynamics, regulated by mitochondrial fission, fusion, and trafficking, ensure restructuring of this complex reticulum in response to nutrient availability, molecular signals, and cellular stress. Aberrant mitochondrial structures have long been observed in aging and age-related diseases indicating that mitochondrial dynamics are compromised as cells age. However, the specific mechanisms by which aging affects mitochondrial dynamics and whether these changes are causally or casually associated with cellular and organismal aging is not clear. Here, we review recent studies that show specifically how mitochondrial fission, fusion, and trafficking are altered with age. We discuss factors that change with age to directly or indirectly influence mitochondrial dynamics while examining causal roles for altered mitochondrial dynamics in healthy aging and underlying functional outputs that might affect longevity. Lastly, we propose that altered mitochondrial dynamics might not just be a passive consequence of aging but might constitute an adaptive mechanism to mitigate age-dependent cellular impairments and might be targeted to increase longevity and promote healthy aging.


Assuntos
Envelhecimento Saudável/fisiologia , Longevidade/fisiologia , Dinâmica Mitocondrial/fisiologia , Proteínas Quinases Ativadas por AMP/fisiologia , Envelhecimento/fisiologia , Animais , Senescência Celular/fisiologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Insulina/fisiologia , Microbiota/fisiologia , Modelos Biológicos , Organelas/fisiologia , Transdução de Sinais , Sirtuínas/fisiologia , Somatomedinas/fisiologia , Serina-Treonina Quinases TOR/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...