Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurophotonics ; 11(2): 024307, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38628980

RESUMO

Significance: Advances in genetically encoded sensors and two-photon imaging have unlocked functional imaging at the level of single dendritic spines. Synaptic activity can be measured in real time in awake animals. However, tools are needed to facilitate the analysis of the large datasets acquired by the approach. Commonly available software suites for imaging calcium transients in cell bodies are ill-suited for spine imaging as dendritic spines have structural characteristics distinct from those of the cell bodies. We present an automated tuning analysis tool (AUTOTUNE), which provides analysis routines specifically developed for the extraction and analysis of signals from subcellular compartments, including dendritic subregions and spines. Aim: Although the acquisition of in vivo functional synaptic imaging data is increasingly accessible, a hurdle remains in the computation-heavy analyses of the acquired data. The aim of this study is to overcome this barrier by offering a comprehensive software suite with a user-friendly interface for easy access to nonprogrammers. Approach: We demonstrate the utility and effectiveness of our software with demo analyses of dendritic imaging data acquired from layer 2/3 pyramidal neurons in mouse V1 in vivo. A user manual and demo datasets are also provided. Results: AUTOTUNE provides a robust workflow for analyzing functional imaging data from neuronal dendrites. Features include source image registration, segmentation of regions-of-interest and detection of structural turnover, fluorescence transient extraction and smoothing, subtraction of signals from putative backpropagating action potentials, and stimulus and behavioral parameter response tuning analyses. Conclusions: AUTOTUNE is open-source and extendable for diverse functional synaptic imaging experiments. The ease of functional characterization of dendritic spine activity provided by our software can accelerate new functional studies that complement decades of morphological studies of dendrites, and further expand our understanding of neural circuits in health and in disease.

2.
Nat Methods ; 21(1): 132-141, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38129618

RESUMO

Multiphoton microscopy can resolve fluorescent structures and dynamics deep in scattering tissue and has transformed neural imaging, but applying this technique in vivo can be limited by the mechanical and optical constraints of conventional objectives. Short working distance objectives can collide with compact surgical windows or other instrumentation and preclude imaging. Here we present an ultra-long working distance (20 mm) air objective called the Cousa objective. It is optimized for performance across multiphoton imaging wavelengths, offers a more than 4 mm2 field of view with submicrometer lateral resolution and is compatible with commonly used multiphoton imaging systems. A novel mechanical design, wider than typical microscope objectives, enabled this combination of specifications. We share the full optical prescription, and report performance including in vivo two-photon and three-photon imaging in an array of species and preparations, including nonhuman primates. The Cousa objective can enable a range of experiments in neuroscience and beyond.


Assuntos
Corantes , Microscopia de Fluorescência por Excitação Multifotônica , Animais , Microscopia de Fluorescência por Excitação Multifotônica/métodos
3.
eNeuro ; 8(5)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34400470

RESUMO

Excitatory synaptic inputs arriving at the dendrites of a neuron can engage active mechanisms that nonlinearly amplify the depolarizing currents. This supralinear synaptic integration is subject to modulation by inhibition. However, the specific rules by which different subtypes of interneurons affect the modulation have remained largely elusive. To examine how inhibition influences active synaptic integration, we optogenetically manipulated the activity of the following two subtypes of interneurons: dendrite-targeting somatostatin-expressing (SST) interneurons; and perisomatic-targeting parvalbumin-expressing (PV) interneurons. In acute slices of mouse primary visual cortex, electrical stimulation evoked nonlinear synaptic integration that depended on NMDA receptors. Optogenetic activation of SST interneurons in conjunction with electrical stimulation resulted in predominantly divisive inhibitory gain control, reducing the magnitude of the supralinear response without affecting its threshold. PV interneuron activation, on the other hand, had a minimal effect on the supralinear response. Together, these results delineate the roles for SST and PV neurons in active synaptic integration. Differential effects of inhibition by SST and PV interneurons likely increase the computational capacity of the pyramidal neurons in modulating the nonlinear integration of synaptic output.


Assuntos
Neocórtex , Animais , Interneurônios/metabolismo , Camundongos , Neocórtex/metabolismo , Parvalbuminas/metabolismo , Células Piramidais/metabolismo , Somatostatina/metabolismo
4.
Nature ; 567(7748): 320-321, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30880328
5.
Sci Rep ; 8(1): 1379, 2018 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29358739

RESUMO

Mice use vision to navigate and avoid predators in natural environments. However, their visual systems are compact compared to other mammals, and it is unclear how well mice can discriminate ethologically relevant scenes. Here, we examined natural scene discrimination in mice using an automated touch-screen system. We estimated the discrimination difficulty using the computational metric structural similarity (SSIM), and constructed psychometric curves. However, the performance of each mouse was better predicted by the mean performance of other mice than SSIM. This high inter-mouse agreement indicates that mice use common and robust strategies to discriminate natural scenes. We tested several other image metrics to find an alternative to SSIM for predicting discrimination performance. We found that a simple, primary visual cortex (V1)-inspired model predicted mouse performance with fidelity approaching the inter-mouse agreement. The model involved convolving the images with Gabor filters, and its performance varied with the orientation of the Gabor filter. This orientation dependence was driven by the stimuli, rather than an innate biological feature. Together, these results indicate that mice are adept at discriminating natural scenes, and their performance is well predicted by simple models of V1 processing.


Assuntos
Estimulação Luminosa/métodos , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Animais , Discriminação Psicológica , Camundongos , Modelos Teóricos , Psicometria
6.
Nat Neurosci ; 20(2): 200-208, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28067905

RESUMO

Multiple cortical areas contribute to visual processing in mice. However, the functional organization and development of higher visual areas are unclear. Here we used intrinsic signal optical imaging and two-photon calcium imaging to map visual responses in adult and developing mice. We found that visually driven activity was well correlated among higher visual areas within two distinct subnetworks resembling the dorsal and ventral visual streams. Visual response magnitude in dorsal stream areas slowly increased over the first 2 weeks of visual experience. By contrast, ventral stream areas exhibited strong responses shortly after eye opening. Neurons in a dorsal stream area showed little change in their tuning sharpness to oriented gratings while those in a ventral stream area increased stimulus selectivity and expanded their receptive fields significantly. Together, these findings provide a functional basis for grouping subnetworks of mouse visual areas and revealed stream differences in the development of receptive field properties.


Assuntos
Mapeamento Encefálico , Neurônios/fisiologia , Córtex Visual/fisiologia , Campos Visuais/fisiologia , Vias Visuais/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Estimulação Luminosa/métodos , Córtex Visual/crescimento & desenvolvimento , Vias Visuais/fisiologia
7.
Nat Biotechnol ; 34(8): 857-62, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27347754

RESUMO

Two-photon calcium imaging provides an optical readout of neuronal activity in populations of neurons with subcellular resolution. However, conventional two-photon imaging systems are limited in their field of view to ∼1 mm(2), precluding the visualization of multiple cortical areas simultaneously. Here, we demonstrate a two-photon microscope with an expanded field of view (>9.5 mm(2)) for rapidly reconfigurable simultaneous scanning of widely separated populations of neurons. We custom designed and assembled an optimized scan engine, objective, and two independently positionable, temporally multiplexed excitation pathways. We used this new microscope to measure activity correlations between two cortical visual areas in mice during visual processing.


Assuntos
Mapeamento Encefálico/instrumentação , Microscopia de Fluorescência por Excitação Multifotônica/instrumentação , Neurônios/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Imagens com Corantes Sensíveis à Voltagem/instrumentação , Animais , Mapeamento Encefálico/métodos , Aumento da Imagem/instrumentação , Aumento da Imagem/métodos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Rede Nervosa/fisiologia , Neurônios/citologia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Imagens com Corantes Sensíveis à Voltagem/métodos
8.
Neuron ; 83(4): 879-93, 2014 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-25144876

RESUMO

Sensory experience orchestrates the development of cortical circuitry by adaptively modifying neurotransmission and synaptic connectivity. However, the mechanisms underlying these experience-dependent modifications remain elusive. Here we demonstrate that visual experience suppresses a presynaptic NMDA receptor (preNMDAR)-mediated form of timing-dependent long-term depression (tLTD) at visual cortex layer (L) 4-2/3 synapses. This tLTD can be maintained during development, or reinstated in adulthood, by sensory deprivation. The changes in tLTD are mirrored by changes in glutamate release; visual deprivation enhances both tLTD and glutamate release. These effects require the GluN3A NMDAR subunit, the levels of which are increased by visual deprivation. Further, by coupling the pathway-specific optogenetic induction of tLTD with cell-type-specific NMDAR deletion, we find that visual experience modifies preNMDAR-mediated plasticity specifically at L4-L2/3 synapses.


Assuntos
Plasticidade Neuronal/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Receptores Pré-Sinápticos/fisiologia , Sinapses/fisiologia , Animais , Ácido Glutâmico/metabolismo , Depressão Sináptica de Longo Prazo/fisiologia , Camundongos , Optogenética , Estimulação Luminosa , Receptores de N-Metil-D-Aspartato/genética , Privação Sensorial/fisiologia , Córtex Visual/metabolismo , Córtex Visual/fisiologia , Percepção Visual/fisiologia
10.
Nature ; 503(7474): 115-20, 2013 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-24162850

RESUMO

Neuronal dendrites are electrically excitable: they can generate regenerative events such as dendritic spikes in response to sufficiently strong synaptic input. Although such events have been observed in many neuronal types, it is not well understood how active dendrites contribute to the tuning of neuronal output in vivo. Here we show that dendritic spikes increase the selectivity of neuronal responses to the orientation of a visual stimulus (orientation tuning). We performed direct patch-clamp recordings from the dendrites of pyramidal neurons in the primary visual cortex of lightly anaesthetized and awake mice, during sensory processing. Visual stimulation triggered regenerative local dendritic spikes that were distinct from back-propagating action potentials. These events were orientation tuned and were suppressed by either hyperpolarization of membrane potential or intracellular blockade of NMDA (N-methyl-d-aspartate) receptors. Both of these manipulations also decreased the selectivity of subthreshold orientation tuning measured at the soma, thus linking dendritic regenerative events to somatic orientation tuning. Together, our results suggest that dendritic spikes that are triggered by visual input contribute to a fundamental cortical computation: enhancing orientation selectivity in the visual cortex. Thus, dendritic excitability is an essential component of behaviourally relevant computations in neurons.


Assuntos
Potenciais de Ação , Dendritos/fisiologia , Córtex Visual/citologia , Animais , Sinalização do Cálcio , Sedação Consciente , Potenciais Evocados/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , Estimulação Luminosa , Células Piramidais/citologia , Células Piramidais/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Vigília/fisiologia
11.
Neuron ; 76(3): 579-89, 2012 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-23141069

RESUMO

At small central synapses, efficient turnover of vesicles is crucial for stimulus-driven transmission, but how the structure of this recycling pool relates to its functional role remains unclear. Here we characterize the organizational principles of functional vesicles at native hippocampal synapses with nanoscale resolution using fluorescent dye labeling and electron microscopy. We show that the recycling pool broadly scales with the magnitude of the total vesicle pool, but its average size is small (∼45 vesicles), highly variable, and regulated by CDK5/calcineurin activity. Spatial analysis demonstrates that recycling vesicles are preferentially arranged near the active zone and this segregation is abolished by actin stabilization, slowing the rate of activity-driven exocytosis. Our approach reveals a similarly biased recycling pool distribution at synapses in visual cortex activated by sensory stimulation in vivo. We suggest that in small native central synapses, efficient release of a limited pool of vesicles relies on their favored spatial positioning within the terminal.


Assuntos
Endocitose/fisiologia , Hipocampo/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo , Animais , Hipocampo/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Cultura de Órgãos , Estimulação Luminosa/métodos , Ratos , Sinapses/ultraestrutura , Vesículas Sinápticas/ultraestrutura
13.
Curr Opin Neurobiol ; 21(2): 245-53, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21353528

RESUMO

The cerebellar cortical circuit with its organized and repetitive structure provides an excellent model system for studying how brain circuits are formed during development. The emergence of the mature brain requires that appropriate synaptic connections are formed and refined, which in the rodent cerebellum occurs primarily during the first three postnatal weeks. Developing circuits typically differ substantially from their mature counterparts, which suggests that development may not simply involve synaptic refinement, but rather involves restructuring of key synaptic components and network connections, in a manner reminiscent of metamorphosis. Here, we discuss recent evidence that, taken together, suggests that transient features of developing cerebellar synapses may act to coordinate network activity, and thereby shape the development of the cerebellar microcircuit.


Assuntos
Cerebelo/crescimento & desenvolvimento , Vias Neurais/crescimento & desenvolvimento , Neurogênese/fisiologia , Sinapses/fisiologia , Animais , Cerebelo/ultraestrutura , Humanos , Vias Neurais/ultraestrutura , Sinapses/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...