Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 11(20)2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36291085

RESUMO

Non-alcoholic fatty liver disease affects one-fourth of the world's population. Central to the disease progression is lipid accumulation in the liver, followed by inflammation, fibrosis and cirrhosis. The underlying mechanism behind the early stages of the disease is poorly understood. We have exposed human hepatic HepG2/C3A cells-based spheroids to 65 µM oleic acid and 45 µM palmitic acid and employed proteomics and lipidomics analysis to investigate their effect on hepatocytes. The treatment successfully induced in vivo hallmarks of NAFLD, as evidenced by intracellular lipid accumulation and increased ATP levels. Quantitative lipidome analysis revealed an increase in ceramides, LPC and saturated triglycerides and a decrease in the ratio of PC/PE, similar to the changes observed in patients' liver biopsies. The proteomics analysis combined with qPCR showed increased epithelial to mesenchymal transition (EMT) signalling. Activation of EMT was further validated by transcriptomics in TGF-ß treated spheroids, where an increase in mesenchymal cell markers (N-cadherin and collagen expression) was found. Our study demonstrates that this model system thus closely echoes several of the clinical features of non-alcoholic fatty liver disease and can be used to investigate the underlying molecular changes occurring in the condition.


Assuntos
Lipidômica , Hepatopatia Gordurosa não Alcoólica , Humanos , Trifosfato de Adenosina/metabolismo , Caderinas/metabolismo , Ceramidas/metabolismo , Transição Epitelial-Mesenquimal , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ácido Oleico/metabolismo , Ácido Palmítico/metabolismo , Proteoma/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Triglicerídeos/metabolismo , Células Hep G2
2.
Essays Biochem ; 64(1): 135-153, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-31957791

RESUMO

Post-translational modifications (PTMs) are integral to the regulation of protein function, characterising their role in this process is vital to understanding how cells work in both healthy and diseased states. Mass spectrometry (MS) facilitates the mass determination and sequencing of peptides, and thereby also the detection of site-specific PTMs. However, numerous challenges in this field continue to persist. The diverse chemical properties, low abundance, labile nature and instability of many PTMs, in combination with the more practical issues of compatibility with MS and bioinformatics challenges, contribute to the arduous nature of their analysis. In this review, we present an overview of the established MS-based approaches for analysing PTMs and the common complications associated with their investigation, including examples of specific challenges focusing on phosphorylation, lysine acetylation and redox modifications.


Assuntos
Proteínas/análise , Proteínas/metabolismo , Acetilação , Biologia Computacional , Humanos , Espectrometria de Massas , Oxirredução , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...