Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Rev ; 123(23): 12795-13208, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-37967475

RESUMO

Transition metal borides, carbides, pnictides, and chalcogenides (X-ides) have emerged as a class of materials for the oxygen evolution reaction (OER). Because of their high earth abundance, electrical conductivity, and OER performance, these electrocatalysts have the potential to enable the practical application of green energy conversion and storage. Under OER potentials, X-ide electrocatalysts demonstrate various degrees of oxidation resistance due to their differences in chemical composition, crystal structure, and morphology. Depending on their resistance to oxidation, these catalysts will fall into one of three post-OER electrocatalyst categories: fully oxidized oxide/(oxy)hydroxide material, partially oxidized core@shell structure, and unoxidized material. In the past ten years (from 2013 to 2022), over 890 peer-reviewed research papers have focused on X-ide OER electrocatalysts. Previous review papers have provided limited conclusions and have omitted the significance of "catalytically active sites/species/phases" in X-ide OER electrocatalysts. In this review, a comprehensive summary of (i) experimental parameters (e.g., substrates, electrocatalyst loading amounts, geometric overpotentials, Tafel slopes, etc.) and (ii) electrochemical stability tests and post-analyses in X-ide OER electrocatalyst publications from 2013 to 2022 is provided. Both mono and polyanion X-ides are discussed and classified with respect to their material transformation during the OER. Special analytical techniques employed to study X-ide reconstruction are also evaluated. Additionally, future challenges and questions yet to be answered are provided in each section. This review aims to provide researchers with a toolkit to approach X-ide OER electrocatalyst research and to showcase necessary avenues for future investigation.

2.
ACS Appl Mater Interfaces ; 14(37): 42153-42170, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36084243

RESUMO

Alkaline water electrolysis, a promising technology for clean energy storage, is constrained by extrinsic factors in addition to intrinsic electrocatalytic activity. To begin to compare between catalytic materials for electrolysis applications, these extrinsic factors must first be understood and controlled. Here, we modify extrinsic electrode properties and study the effects of bubble release to examine how the electrode and surface design impact the performance of water electrolysis. We fabricate robust and cost-effective electrodes through a sequential three-dimensional (3D) printing and metal deposition procedure. Through a systematic assessment of the deposition procedure, we confirm the close relationship between extrinsic electrode properties (i.e., wettability, surface roughness, and electrochemically active surface area) and electrochemical performance. Modifying the electrode geometry, size, and electrolyte flow rate results in an overpotential decrease and different bubble diameters and lifetimes for the hydrogen (HER) and oxygen evolution reactions (OER). Hence, we demonstrate the essential role of the electrode architecture and forced electrolyte convection on bubble release. Additionally, we confirm the suitability of ordered, Ni-coated 3D porous structures by evaluating the HER/OER performance, bubble dissipation, and long-term stability. Finally, we utilize the 3D porous electrode as a support for studying a benchmark NiFe electrocatalyst, confirming the robustness and effectiveness of 3D-printed electrodes for testing electrocatalytic materials while extrinsic properties are precisely controlled. Overall, we demonstrate that tailoring electrode architectures and surface properties result in precise tuning of extrinsic electrode properties, providing more reproducible and comparable conditions for testing the efficiency of electrode materials for water electrolysis.

3.
ACS Nano ; 16(4): 5393-5403, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35358382

RESUMO

Potassium poly(heptazine imide) (KPHI) has recently garnered attention as a crystalline carbon nitride framework with considerable photoelectrochemical activity. Here, we report a Ca2+-complexed analogue of PHI: calcium poly(heptazine imide) (CaPHI). Despite similar polymer backbone, CaPHI and KPHI exhibit markedly different crystal structures. Spectroscopic, crystallographic, and physisorptive characterization reveal that Ca2+ acts as a structure-directing agent to transform melon-based carbon nitride to crystalline CaPHI with ordered pore channels, extended visible light absorption, and altered band structure as compared to KPHI. Upon acid washing, protons replace Ca2+ atoms in CaPHI to yield H+/CaPHI and enhance porosity without disrupting crystal structure. Further, these proton-exchanged PHI frameworks exhibit large adsorption affinity for CO2 and exceptional performance for selective carbon capture from dilute streams. Compared to a state-of-the-art metal organic framework, UTSA-16, H+/CaPHI exhibits more than twice the selectivity (∼300 vs ∼120) and working capacity (∼1.2 mmol g-1 vs ∼0.5 mmol g-1) for a feed of 4% CO2 (1 bar, 30 °C).

4.
Anal Chem ; 92(2): 2266-2273, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31830783

RESUMO

We demonstrate the application of open circuit potentiometry (OCP) to measure enzyme turnover kinetics, kturn. The electrode surface will become poised by the addition of a well-behaved redox pair, such as ferrocenemethanol/ferrocenium methanol (FcMeOH/FcMeOH+), which acts as the cosubstrate for the enzymatic process. A measurable change in potential results when an enzyme consumes the one-electron transfer mediator. Glucose oxidase was studied as a test-case, but the method is generalizable across oxidoreductase enzymes that rely on electron transfer mediators. In the presence of glucose and FcMeOH+, glucose oxidase delivers electrons to FcMeOH+, and the potential changes with respect to the Nernst equation. A theoretical model incorporating enzymatic rate expressions into the Nernst equation was derived to explain the observed potential transients, and experimental data fit theory well. A similar experiment was performed using amperometry on ultramicroelectrodes (UMEs). Here, the same enzymatic rate expression may be incorporated into the equation for steady-state flux to an UME to obtain kturn. While similar kinetic information was obtained from the potentiometric and amperometric responses, potentiometry is independent of electrode size and mass transfer effects. Finally, we show how kturn changes as a function of one-electron mediator. Our results may eventually find applications to biosensors, where electrode fouling plagues long-term sensor performance.


Assuntos
Glucose Oxidase/metabolismo , Oxirredutases/metabolismo , Potenciometria , Eletrodos , Cinética , Modelos Moleculares , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...