Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 115(19): 4992-4997, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29610353

RESUMO

By tethering their circular genomes (episomes) to host chromatin, DNA tumor viruses ensure retention and segregation of their genetic material during cell divisions. Despite functional genetic and crystallographic studies, there is little information addressing the 3D structure of these tethers in cells, issues critical for understanding persistent infection by these viruses. Here, we have applied direct stochastic optical reconstruction microscopy (dSTORM) to establish the nanoarchitecture of tethers within cells latently infected with the oncogenic human pathogen, Kaposi's sarcoma-associated herpesvirus (KSHV). Each KSHV tether comprises a series of homodimers of the latency-associated nuclear antigen (LANA) that bind with their C termini to the tandem array of episomal terminal repeats (TRs) and with their N termini to host chromatin. Superresolution imaging revealed that individual KSHV tethers possess similar overall dimensions and, in aggregate, fold to occupy the volume of a prolate ellipsoid. Using plasmids with increasing numbers of TRs, we found that tethers display polymer power law scaling behavior with a scaling exponent characteristic of active chromatin. For plasmids containing a two-TR tether, we determined the size, separation, and relative orientation of two distinct clusters of bound LANA, each corresponding to a single TR. From these data, we have generated a 3D model of the episomal half of the tether that integrates and extends previously established findings from epifluorescent, crystallographic, and epigenetic approaches. Our findings also validate the use of dSTORM in establishing novel structural insights into the physical basis of molecular connections linking host and pathogen genomes.


Assuntos
Antígenos Virais/metabolismo , Cromatina/metabolismo , Epigênese Genética , Herpesvirus Humano 8/metabolismo , Imageamento Tridimensional , Proteínas Nucleares/metabolismo , Animais , Células COS , Chlorocebus aethiops , Cromatina/ultraestrutura , Microscopia de Fluorescência/métodos
2.
Cold Spring Harb Perspect Biol ; 7(1): a019364, 2015 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-25561719

RESUMO

Histones package and compact DNA by assembling into nucleosome core particles. Most histones are synthesized at S phase for rapid deposition behind replication forks. In addition, the replacement of histones deposited during S phase by variants that can be deposited independently of replication provide the most fundamental level of chromatin differentiation. Alternative mechanisms for depositing different variants can potentially establish and maintain epigenetic states. Variants have also evolved crucial roles in chromosome segregation, transcriptional regulation, DNA repair, and other processes. Investigations into the evolution, structure, and metabolism of histone variants provide a foundation for understanding the participation of chromatin in important cellular processes and in epigenetic memory.


Assuntos
Ciclo Celular/fisiologia , Cromatina/genética , Epigênese Genética/fisiologia , Evolução Molecular , Variação Genética/genética , Histonas/genética , Histonas/metabolismo , Animais , Archaea/genética , Reparo do DNA/fisiologia , Epigênese Genética/genética , Humanos , Modelos Biológicos
3.
Epigenetics Chromatin ; 5: 7, 2012 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-22650316

RESUMO

Histone variants are non-allelic protein isoforms that play key roles in diversifying chromatin structure. The known number of such variants has greatly increased in recent years, but the lack of naming conventions for them has led to a variety of naming styles, multiple synonyms and misleading homographs that obscure variant relationships and complicate database searches. We propose here a unified nomenclature for variants of all five classes of histones that uses consistent but flexible naming conventions to produce names that are informative and readily searchable. The nomenclature builds on historical usage and incorporates phylogenetic relationships, which are strong predictors of structure and function. A key feature is the consistent use of punctuation to represent phylogenetic divergence, making explicit the relationships among variant subtypes that have previously been implicit or unclear. We recommend that by default new histone variants be named with organism-specific paralog-number suffixes that lack phylogenetic implication, while letter suffixes be reserved for structurally distinct clades of variants. For clarity and searchability, we encourage the use of descriptors that are separate from the phylogeny-based variant name to indicate developmental and other properties of variants that may be independent of structure.

4.
Proc Natl Acad Sci U S A ; 109(15): 5779-84, 2012 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-22451923

RESUMO

A large body of literature provides compelling evidence for the role of evolutionarily conserved core histone residues in various biological processes. However, site-directed mutagenesis of individual residues that are known to be sites of posttranslational modifications often does not result in clear phenotypic defects. In some cases, the combination of multiple mutations can give rise to stronger phenotypes, implying functional redundancy between distinct residues on histones. Here, we examined the "histone redundancy hypothesis" by characterizing double deletion of all pairwise combinations of amino-terminal tails (N-tails) from the four core histones encoded in budding yeast. First, we found that multiple lysine residues on the N-tails of both H2A and H4 are redundantly involved in cell viability. Second, simultaneous deletion of N-tails from H2A and H3 leads to a severe growth defect, which is correlated with perturbed gross chromatin structure in the mutant cells. Finally, by combining point mutations on H3 with deletion of the H2A N-tail, we revealed a redundant role for lysine 4 on H3 and the H2A N-tail in hydroxyurea-mediated response. Altogether, these data suggest that the N-tails of core histones share previously unrecognized, potentially redundant functions that, in some cases are different from those of the widely accepted H2A/H2B and H3/H4 dimer pairs.


Assuntos
Histonas/química , Histonas/genética , Mutagênese/genética , Saccharomycetales/genética , Acetilação , Sequência de Aminoácidos , Cromatina/metabolismo , Lisina/metabolismo , Viabilidade Microbiana , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação/genética , Fenótipo , Saccharomycetales/citologia , Deleção de Sequência/genética
5.
Mol Genet Genomics ; 285(4): 287-96, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21359583

RESUMO

The incorporation of histone variants is one mechanism used by the eukaryotic cell to alter the generally repressive chromatin template. However, the exact molecular mechanisms that direct this incorporation are not well understood. The SWR1 chromatin remodeling complex that binds to and directs incorporation of histone variant H2A.Z into chromatin has been characterized, but significantly less information is available concerning the requirements on the H2A.Z target molecule. We performed an unbiased mutagenic screen designed to elucidate the function of H2A.Z in Saccharomyces cerevisiae. The screen identified residues within the conserved acidic patch of H2A.Z as being important for the function of the variant. We characterized single point mutations in the patch that are phenotypically sensitive to a variety of growth conditions and are expressed at lower protein levels, but are functionally defective (htz1-D99A, htz1-D99K, and htz1-E101K). The mutants were significantly less detectable by chromatin immunoprecipitation at PHO5, a gene previously described to be enriched for H2A.Z. These results identify acidic patch residues of H2A.Z that are critical for mediating deposition and function in chromatin, and represent potential candidates for the interaction of H2A.Z with its deposition and/or targeting machinery.


Assuntos
Aminoácidos/metabolismo , Histonas/química , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fosfatase Ácida/metabolismo , Alelos , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Imunoprecipitação da Cromatina , Sequência Conservada/genética , Dosagem de Genes/genética , Testes Genéticos , Histonas/genética , Dados de Sequência Molecular , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação/genética , Nucleossomos/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Relação Estrutura-Atividade
6.
Mol Cell Biol ; 31(9): 1848-60, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21357739

RESUMO

Nucleosomes containing histone variant H2A.Z (Htz1) serve to poise quiescent genes for activation and transcriptional initiation. However, little is known about their role in transcription elongation. Here we show that dominant mutations in the elongation genes SPT5 and SPT16 suppress the hypersensitivity of htz1Δ strains to drugs that inhibit elongation, indicating that Htz1 functions at the level of transcription elongation. Direct kinetic measurements of RNA polymerase II (Pol II) movement across the 9.5-kb GAL10p-VPS13 gene revealed that the elongation rate of polymerase is 24% slower in the absence of Htz1. We provide evidence for two nonexclusive mechanisms. First, we observed that both the phospho-Ser2 levels in the elongating isoform of Pol II and the loading of Spt5 and Elongator over the GAL1 open reading frame (ORF) depend on Htz1. Second, in the absence of Htz1, the density of nucleosome occupancy is increased over the GAL10p-VPS13 ORF and the chromatin is refractory to remodeling during active transcription. These results establish a mechanistic role for Htz1 in transcription elongation and suggest that Htz1-containing nucleosomes facilitate Pol II passage by affecting the correct assembly and modification status of Pol II elongation complexes and by favoring efficient nucleosome remodeling over the gene.


Assuntos
Proteínas Cromossômicas não Histona/genética , Regulação Fúngica da Expressão Gênica , Histonas/genética , RNA Polimerase II/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Fatores de Elongação da Transcrição/genética , Proteínas Cromossômicas não Histona/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Histonas/metabolismo , Mutação , Fosforilação , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica/efeitos dos fármacos , Fatores de Elongação da Transcrição/metabolismo
7.
Genetics ; 187(4): 1053-66, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21288874

RESUMO

Histone variants and histone modification complexes act to regulate the functions of chromatin. In Saccharomyces cerevisiae the histone variant H2A.Z is encoded by HTZ1. Htz1 is dispensable for viability in budding yeast, but htz1Δ is synthetic sick or lethal with the null alleles of about 200 nonessential genes. One of the strongest of these interactions is with the deletion of SET3, which encodes a subunit of the Set3/Hos2 histone deacetylase complex. Little is known about the functions of Set3, and interpreting these genetic interactions remains a highly challenging task. Here we report the results of a forward genetic screen to identify bypass suppressors of the synthetic slow-growth phenotype of htz1Δ set3Δ. Among the identified loss-of-function suppressors are genes encoding subunits of the HDA1 deacetylase complex, the SWR1 complex, the H2B deubiquitination module of SAGA, the proteasome, Set1, and Sir3. This constellation of suppressor genes is uncommon among the global set of htz1Δ synthetic interactions. BDF1, AHC1, RMR1, and CYC8 were identified as high-copy suppressors. We also identified interactions with SLX5 and SLX8, encoding the sumoylation-targeted ubiquitin ligase complex. In the context of htz1Δ set3Δ, suppressors in the SWR1 and the H2B deubiquitination complexes show strong functional similarity, as do suppressors in the silencing genes and the proteasome. Surprisingly, while both htz1Δ set3Δ and swr1Δ set3Δ have severe slow-growth phenotypes, the htz1Δ swr1Δ set3Δ triple mutant grows relatively well. We propose that Set3 has previously unrecognized functions in the dynamic deposition and remodeling of nucleosomes containing H2A.Z.


Assuntos
Histona Desacetilases/genética , Histonas/genética , Nucleossomos/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Cromatina/genética , Cromatina/metabolismo , Regulação Fúngica da Expressão Gênica , Inativação Gênica , Histonas/metabolismo , Mutagênese , Nucleossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Deleção de Sequência , Sumoilação , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
8.
Nat Cell Biol ; 12(3): 294-8, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20139971

RESUMO

Post-translational histone modifications are crucial for the regulation of numerous DNA-templated processes, and are thought to mediate both alteration of chromatin dynamics and recruitment of effector proteins to specific regions of the genome. In particular, histone Ser/Thr phosphorylation regulates multiple nuclear functions in the budding yeast Saccharomyces cerevisiae, including transcription, DNA damage repair, mitosis, apoptosis and sporulation. Although modifications to chromatin during replication remain poorly understood, a number of recent studies have described acetylation of the histone H3 N-terminal alpha-helix (alphaN helix) at Lys 56 as a modification that is important for maintenance of genomic integrity during DNA replication and repair. Here, we report phosphorylation of H3 Thr 45 (H3-T45), a histone modification also located within the H3 alphaN helix in S. cerevisiae. Thr 45 phosphorylation peaks during DNA replication, and is mediated by the S phase kinase Cdc7-Dbf4 as part of a multiprotein complex identified in this study. Furthermore, loss of phosphorylated H3-T45 causes phenotypes consistent with replicative defects, and prolonged replication stress results in H3-T45 phosphorylation accumulation over time. Notably, the phenotypes described here are independent of Lys 56 acetylation status, and combinatorial mutations to both Thr 45 and Lys 56 of H3 cause synthetic growth defects. Together, these data identify and characterize H3-T45 phosphorylation as a replication-associated histone modification in budding yeast.


Assuntos
Replicação do DNA/fisiologia , Histonas/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Saccharomyces cerevisiae/metabolismo , Treonina/metabolismo , Acetilação , Substituição de Aminoácidos/fisiologia , Camptotecina/farmacocinética , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Replicação do DNA/efeitos dos fármacos , Histonas/genética , Hidroxiureia/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lisina/metabolismo , Mutação/fisiologia , Nocodazol/farmacologia , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fase S/efeitos dos fármacos , Fase S/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Gene ; 436(1-2): 108-14, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19393168

RESUMO

In addition to the well-characterized proteins that comprise the pre-replicative complex, recent studies suggest that chromatin structure plays an important role in DNA replication initiation. One of these chromatin factors is the histone acetyltransferase (HAT) Hbo1 which is unique among HAT enzymes in that it serves as a positive regulator of DNA replication. However, several of the basic properties of Hbo1 have not been previously examined, including its intrinsic catalytic activity, its molecular abundance in cells, and its pattern of expression in primary cancer cells. Here we show that recombinant Hbo1 can acetylate nucleosomal histone H4 in vitro, with a preference for lysines 5 and 12. Using semi-quantitative western blot analysis, we find that Hbo1 is approximately equimolar with the number of active replication origins in normal human fibroblasts but is an order of magnitude more abundant in both MCF7 and Saos-2 established cancer cell lines. Immunohistochemistry for Hbo1 in 11 primary human tumor types revealed strong Hbo1 protein expression in carcinomas of the testis, ovary, breast, stomach/esophagus, and bladder.


Assuntos
Histona Acetiltransferases/metabolismo , Neoplasias/enzimologia , Acetilação , Sítios de Ligação , Western Blotting , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Catálise , Domínio Catalítico , Linhagem Celular , Linhagem Celular Tumoral , Eletroforese em Gel de Poliacrilamida , Feminino , Histona Acetiltransferases/genética , Histonas/metabolismo , Humanos , Imuno-Histoquímica , Neoplasias Renais/enzimologia , Neoplasias Renais/patologia , Lisina/metabolismo , Masculino , Neoplasias/patologia , Nucleossomos/metabolismo , Neoplasias Ovarianas/enzimologia , Neoplasias Ovarianas/patologia , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/patologia , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/patologia , Proteínas Recombinantes/metabolismo , Análise Serial de Tecidos , Neoplasias da Bexiga Urinária/enzimologia , Neoplasias da Bexiga Urinária/patologia
10.
Genetics ; 178(3): 1209-20, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18245364

RESUMO

Esa1 is the only essential histone acetyltransferase (HAT) in budding yeast. It is the catalytic subunit of at least two multiprotein complexes, NuA4 and Piccolo NuA4 (picNuA4), and its essential function is believed to be its catalytic HAT activity. To examine the role of Esa1 in DNA damage repair, we isolated viable esa1 mutants with a range of hypersensitivities to the toposide camptothecin. Here we show that the sensitivity of these mutants to a variety of stresses is inversely proportional to their level of histone H4 acetylation, demonstrating the importance of Esa1 catalytic activity for resistance to genotoxic stress. Surprisingly, individual mutations in two residues directly involved in catalysis were not lethal even though the mutant enzymes appear catalytically inactive both in vivo and in vitro. However, the double-point mutant is lethal, demonstrating that the essential function of Esa1 relies on residues within the catalytic pocket but not catalysis. We propose that the essential function of Esa1 may be to bind acetyl-CoA or lysine substrates and positively regulate the activities of NuA4 and Piccolo NuA4.


Assuntos
Domínio Catalítico/genética , Histona Acetiltransferases/genética , Mutação/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Alelos , Western Blotting , Histona Acetiltransferases/química , Histona Acetiltransferases/metabolismo , Viabilidade Microbiana , Modelos Genéticos , Fenótipo , Estrutura Secundária de Proteína , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Mol Cell Biol ; 28(1): 140-53, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17954561

RESUMO

Hbo1 is a histone acetyltransferase (HAT) that is required for global histone H4 acetylation, steroid-dependent transcription, and chromatin loading of MCM2-7 during DNA replication licensing. It is the catalytic subunit of protein complexes that include ING and JADE proteins, growth regulatory factors and candidate tumor suppressors. These complexes are thought to act via tumor suppressor p53, but the molecular mechanisms and links between stress signaling and chromatin, are currently unknown. Here, we show that p53 physically interacts with Hbo1 and negatively regulates its HAT activity in vitro and in cells. Two physiological stresses that stabilize p53, hyperosmotic shock and DNA replication fork arrest, also inhibit Hbo1 HAT activity in a p53-dependent manner. Hyperosmotic stress during G(1) phase specifically inhibits the loading of the MCM2-7 complex, providing an example of the chromatin output of this pathway. These results reveal a direct regulatory connection between p53-responsive stress signaling and Hbo1-dependent chromatin pathways.


Assuntos
Replicação do DNA/genética , DNA/genética , Histona Acetiltransferases/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Animais , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Ativação Enzimática , Histona Acetiltransferases/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Camundongos Knockout , Pressão Osmótica , Ligação Proteica , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética , Proteínas Supressoras de Tumor/metabolismo
12.
Cell ; 129(6): 1153-64, 2007 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-17574026

RESUMO

The budding yeast histone H3 variant, Cse4, replaces conventional histone H3 in centromeric chromatin and, together with centromere-specific DNA-binding factors, directs assembly of the kinetochore, a multiprotein complex mediating chromosome segregation. We have identified Scm3, a nonhistone protein that colocalizes with Cse4 and is required for its centromeric association. Bacterially expressed Scm3 binds directly to and reconstitutes a stoichiometric complex with Cse4 and histone H4 but not with conventional histone H3 and H4. A conserved acidic domain of Scm3 is responsible for directing the Cse4-specific interaction. Strikingly, binding of Scm3 can replace histones H2A-H2B from preassembled Cse4-containing histone octamers. This incompatibility between Scm3 and histones H2A-H2B is correlated with diminished in vivo occupancy of histone H2B, H2A, and H2AZ at centromeres. Our findings indicate that nonhistone Scm3 serves to assemble and maintain Cse4-H4 at centromeres and may replace histone H2A-H2B dimers in a centromere-specific nucleosome core.


Assuntos
Centrômero/química , Proteínas Cromossômicas não Histona/fisiologia , Proteínas de Ligação a DNA/fisiologia , Histonas/metabolismo , Nucleossomos/química , Proteínas de Saccharomyces cerevisiae/fisiologia , Ciclo Celular , Dimerização , Histonas/química , Cinetocoros/química , Cinetocoros/metabolismo , Modelos Biológicos , Modelos Genéticos , Ligação Proteica , Proteínas Recombinantes/química , Temperatura
13.
Mol Cell Biol ; 26(3): 1098-108, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16428461

RESUMO

The initiation of DNA replication is tightly regulated in eukaryotic cells to ensure that the genome is precisely duplicated once and only once per cell cycle. This is accomplished by controlling the assembly of a prereplicative complex (pre-RC) which involves the sequential binding to replication origins of the origin recognition complex (ORC), Cdc6/Cdc18, Cdt1, and the minichromosome maintenance complex (Mcm2-Mcm7, or Mcm2-7). Several mechanisms of pre-RC regulation are known, including ATP utilization, cyclin-dependent kinase levels, protein turnover, and Cdt1 binding by geminin. Histone acetylation may also affect the initiation of DNA replication, but at present neither the enzymes nor the steps involved are known. Here, we show that Hbo1, a member of the MYST histone acetyltransferase family, is a previously unrecognized positive regulatory factor for pre-RC assembly. When Hbo1 expression was inhibited in human cells, Mcm2-7 failed to associate with chromatin even though ORC and Cdc6 loading was normal. When Xenopus egg extracts were immunodepleted of Xenopus Hbo1 (XHbo1), chromatin binding of Mcm2-7 was lost, and DNA replication was abolished. The binding of Mcm2-7 to chromatin in XHbo1-depleted extracts could be restored by the addition of recombinant Cdt1.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Histona Acetiltransferases/metabolismo , Proteínas Nucleares/metabolismo , Acetilação , Sequência de Aminoácidos , Animais , Fase G1 , Histona Acetiltransferases/antagonistas & inibidores , Histona Acetiltransferases/genética , Histonas/metabolismo , Humanos , Componente 2 do Complexo de Manutenção de Minicromossomo , Componente 7 do Complexo de Manutenção de Minicromossomo , Dados de Sequência Molecular , Xenopus , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
14.
Cell ; 120(1): 25-36, 2005 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-15652479

RESUMO

Apoptosis is a highly coordinated cell suicide mechanism in vertebrates. Phosphorylation of serine 14 of histone H2B, catalyzed by Mst1 kinase, has been linked to chromatin compaction during apoptosis. We extend these results to unicellular eukaryotes by demonstrating that H2B is specifically phosphorylated at serine 10 (S10) in a hydrogen peroxide-induced cell death pathway in S. cerevisiae. H2B S10A mutants are resistant to cell death elicited by H(2)O(2) while H2B S10E phospho-site mimics promote cell death and induce the "constitutive" formation of condensed chromatin. Ste20 kinase, a yeast homolog of mammalian Mst1 kinase, translocates into the nucleus in a caspase-independent fashion and directly phosphorylates H2B at S10. Conservation of targeted H2B phosphorylation and the enzyme system responsible for the process point to an ancient mechanism of chromatin remodeling that likely plays an important role in governing cellular homeostasis in a wide range of organisms.


Assuntos
Apoptose/efeitos dos fármacos , Histonas/metabolismo , Peróxido de Hidrogênio/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Serina/metabolismo , Apoptose/fisiologia , Histonas/genética , Peptídeos e Proteínas de Sinalização Intracelular , MAP Quinase Quinase Quinases , Oxidantes/farmacologia , Fosforilação , Plasmídeos/genética , Saccharomyces cerevisiae/enzimologia , Serina/genética
15.
Mol Cell Biol ; 23(17): 6086-102, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12917332

RESUMO

Yaf9 is one of three proteins in budding yeast containing a YEATS domain. We show that Yaf9 is part of a large complex and that it coprecipitates with three known subunits of the NuA4 histone acetyltransferase. Although Esa1, the catalytic subunit of NuA4, is essential for viability, we found that yaf9 Delta mutants are viable but hypersensitive to microtubule depolymerizing agents and synthetically lethal with two different mutants of the mitotic apparatus. Microtubules depolymerized more readily in the yaf9Delta mutant compared to the wild type in the presence of nocodazole, and recovery of microtubule polymerization and cell division from limiting concentrations of nocodazole was inhibited. Two other NuA4 mutants (esa1-1851 and yng2 Delta) and nonacetylatable histone H4 mutants were also sensitive to benomyl. Furthermore, wild-type budding yeast were more resistant to benomyl when grown in the presence of trichostatin A, a histone deacetylase inhibitor. These results strongly suggest that acetylation of histone H4 by NuA4 is required for the cellular resistance to spindle stress.


Assuntos
Acetiltransferases/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Fuso Acromático/genética , Acetilação , Acetiltransferases/antagonistas & inibidores , Acetiltransferases/genética , Actinas/genética , Sequência de Aminoácidos , Benomilo/farmacologia , Cromatina/metabolismo , Inibidores Enzimáticos/farmacologia , Proteínas Fúngicas/efeitos dos fármacos , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Histona Acetiltransferases , Ácidos Hidroxâmicos/farmacologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Mutação , Nocodazol/farmacologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Estrutura Terciária de Proteína , Subunidades Proteicas , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , Fuso Acromático/efeitos dos fármacos , Transcrição Gênica
16.
Curr Opin Genet Dev ; 13(2): 154-60, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12672492

RESUMO

Covalent modifications of the histone proteins have well-known roles in gene expression. Experiments reported during the past year have extended this paradigm to include roles for histone acetylation and phosphorylation in DNA double-strand break repair. In addition, new results now provide a definitive example of an acetylation histone code, whereas others reveal the workings of a charge patch mechanism. Finally, exciting research has identified new modifications, complex modification cascades, and functional links to DNA methylation and RNA interference pathways.


Assuntos
Histonas/fisiologia , Acetilação , Acetiltransferases/fisiologia , Animais , Humanos , Metilação , Metiltransferases/fisiologia , Fosforilação , Fosfotransferases/fisiologia , RNA/fisiologia , Schizosaccharomyces/fisiologia
17.
Proc Natl Acad Sci U S A ; 100(7): 4084-9, 2003 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-12649325

RESUMO

The yeast CHA1 promoter is activated in the presence of serine or threonine. Activation requires the Cha4p activator, and it results in perturbation of a nucleosome that incorporates the TATA element under noninducing conditions. We show that in yeast lacking the amino terminus of histone H3, the promoter is constitutively active and the chromatin is concomitantly perturbed. This derepression occurs in the absence of elevated intracellular levels of serine or threonine and is not observed in cells lacking Rpd3p, Tup1p, or the amino terminus of histone H4. Furthermore, derepression in the absence of the H3 amino terminus requires the primary activator of this promoter, Cha4p, which we show by chromatin immunoprecipitation to be constitutively bound to the CHA1 promoter in WT yeast. Thus, the H3 amino terminus is required to prevent Cha4p from activating CHA1 in the absence of inducer. We also present results of a microarray experiment showing that the H3 amino terminus has a substantial repressive effect on a genome-wide scale.


Assuntos
Regulação Fúngica da Expressão Gênica , Histonas/genética , Saccharomyces cerevisiae/genética , Transcrição Gênica , Aminoácidos/metabolismo , Histonas/química , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Deleção de Sequência , TATA Box
18.
Nature ; 419(6905): 411-5, 2002 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-12353039

RESUMO

Although the acetylation of histones has a well-documented regulatory role in transcription, its role in other chromosomal functions remains largely unexplored. Here we show that distinct patterns of histone H4 acetylation are essential in two separate pathways of double-strand break repair. A budding yeast strain with mutations in wild-type H4 acetylation sites shows defects in nonhomologous end joining repair and in a newly described pathway of replication-coupled repair. Both pathways require the ESA1 histone acetyl transferase (HAT), which is responsible for acetylating all H4 tail lysines, including ectopic lysines that restore repair capacity to a mutant H4 tail. Arp4, a protein that binds histone H4 tails and is part of the Esa1-containing NuA4 HAT complex, is recruited specifically to DNA double-strand breaks that are generated in vivo. The purified Esa1-Arp4 HAT complex acetylates linear nucleosomal arrays with far greater efficiency than circular arrays in vitro, indicating that it preferentially acetylates nucleosomes near a break site. Together, our data show that histone tail acetylation is required directly for DNA repair and suggest that a related human HAT complex may function similarly.


Assuntos
Acetiltransferases/metabolismo , Dano ao DNA , Reparo do DNA , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Acetilação , Acetiltransferases/genética , Actinas/genética , Actinas/metabolismo , Genes Fúngicos/genética , Histona Acetiltransferases , Lisina/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleossomos/química , Nucleossomos/genética , Nucleossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
19.
Curr Opin Cell Biol ; 14(3): 279-85, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12067649

RESUMO

The CENP-A histone H3-like variants are centromere-specific histones found in all eukaryotes examined to date, from budding yeast to man. New experiments using antibodies, green fluorescent protein fusions, and epitope tags show that CENP-A replaces the major histone H3 subunits in a specialized histone octamer and that it does so with histones H4, and probably H2A and H2B. One of the classic hallmarks of chromatin molecular biology is that nucleosomes are deposited on DNA during replication in S phase. However, dramatic new results in mammalian and Drosophila cells show that CENP-A deposition is uncoupled from the replication of centromere DNA. Furthermore, genetic and phenotypic knockout experiments over the past year have demonstrated that the deposition of CENP-A at newly duplicated sister centromeres is an early step in the biogenesis of new centromeres and is required for the recruitment of other proteins to the centromere and kinetochore. In organisms with complex regional or holocentric centromeres, centromere identity was thought to be defined by the epigenetic state of centromere chromatin. Now, new experiments solidify this model and show that the epigenetic state can be spread in cis experimentally, creating a neocentromere, in a mechanism reminiscent of chromatin transcriptional silencing. Finally, a new report provides a glimpse into the potential regulation of CENP-A through specific post-translational phosphorylation, suggesting a broad level of control through histone tail modifications.


Assuntos
Autoantígenos , Centrômero , Proteínas Cromossômicas não Histona/fisiologia , Sequência de Aminoácidos , Animais , Centrômero/química , Centrômero/genética , Centrômero/fisiologia , Proteína Centromérica A , Proteínas Cromossômicas não Histona/química , Replicação do DNA , Histonas/metabolismo , Humanos , Modelos Genéticos , Dados de Sequência Molecular , Nucleossomos/química , Nucleossomos/metabolismo , Estrutura Terciária de Proteína , Alinhamento de Sequência
20.
Mol Cell ; 9(6): 1158-60, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12086613

RESUMO

In this issue of Molecular Cell, Ahmad and Henikoff show that the replication-independent pathway of chromatin assembly in vivo can discriminate between different histone variants on the basis of their primary amino acid sequences. These results have important implications for chromatin remodeling and epigenetic imprinting.


Assuntos
Histonas/metabolismo , Nucleossomos/metabolismo , Animais , Cromatina/genética , Cromatina/metabolismo , Histonas/química , Histonas/genética , Modelos Moleculares , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...