Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Front Oncol ; 14: 1330419, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38450186

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a heterogeneous cancer, with minimal response to therapeutic intervention and with 85% of cases diagnosed at an advanced stage due to lack of early symptoms, highlighting the importance of understanding PDAC immunology in greater detail. Here, we applied an immunoproteomic approach to investigate autoantibody responses against cancer-testis and tumor-associated antigens in PDAC using a high-throughput multiplexed protein microarray platform, comparing humoral immune responses in serum and at the site of disease in order to shed new light on immune responses in the tumor microenvironment. We simultaneously quantified serum or tissue IgG and IgA antibody isotypes and subclasses in a cohort of PDAC, disease control and healthy patients, observing inter alia that subclass utilization in tumor tissue samples was predominantly immune suppressive IgG4 and inflammatory IgA2, contrasting with predominant IgG3 and IgA1 subclass utilization in matched sera and implying local autoantibody production at the site of disease in an immune-tolerant environment. By comparison, serum autoantibody subclass profiling for the disease controls identified IgG4, IgG1, and IgA1 as the abundant subclasses. Combinatorial analysis of serum autoantibody responses identified panels of candidate biomarkers. The top IgG panel included ACVR2B, GAGE1, LEMD1, MAGEB1 and PAGE1 (sensitivity, specificity and AUC values of 0.933, 0.767 and 0.906). Conversely, the top IgA panel included AURKA, GAGE1, MAGEA10, PLEKHA5 and XAGE3aV1 (sensitivity, specificity, and AUC values of 1.000, 0.800, and 0.954). Assessment of antigen-specific serum autoantibody glycoforms revealed abundant sialylation on IgA in PDAC, consistent with an immune suppressive IgA response to disease.

2.
Viruses ; 15(2)2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36851662

RESUMO

Vaccines against SARS-CoV-2 have been pivotal in overcoming the COVID-19 pandemic yet understanding the subsequent outcomes and immunological effects remain crucial, especially for at-risk groups e.g., people living with human immunodeficiency virus (HIV) (PLWH). In this study we report the longitudinal IgA and IgG antibody titers, as well as antibody-mediated angiotensin converting enzyme 2 (ACE2) binding blockade, against the SARS-CoV-2 spike (S) proteins after 1 and 2 doses of the ChAdOx1 nCoV-19 vaccine in a population of Black PLWH. Here, we report that PLWH (N = 103) did not produce an anti-S IgA response after infection or vaccination, however, anti-S IgG was detected in response to vaccination and infection, with the highest level detected for infected vaccinated participants. The anti-IgG and ACE2 blockade assays revealed that both vaccination and infection resulted in IgG production, however, only vaccination resulted in a moderate increase in ACE2 binding blockade to the ancestral S protein. Vaccination with a previous infection results in the greatest anti-S IgG and ACE2 blockade for the ancestral S protein. In conclusion, PLWH produce an anti-S IgG response to the ChAdOx1 nCoV-19 vaccine and/or infection, and ChAdOx1 nCoV-19 vaccination with a previous infection produced more neutralizing antibodies than vaccination alone.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Humanos , Anticorpos Bloqueadores , Anticorpos Neutralizantes , ChAdOx1 nCoV-19 , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Imunoglobulina A , Pandemias , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus , Imunoglobulina G
3.
Viruses ; 15(2)2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36851798

RESUMO

The COVID-19 pandemic continues to affect individuals across the globe, with some individuals experiencing more severe disease than others. The relatively high frequency of re-infections and breakthrough infections observed with SARS-CoV-2 highlights the importance of extending our understanding of immunity to COVID-19. Here, we aim to shed light on the importance of antibody titres and epitope utilization in protection from re-infection. Health care workers are highly exposed to SARS-CoV-2 and are therefore also more likely to become re-infected. We utilized quantitative, multi-antigen, multi-epitope SARS-CoV-2 protein microarrays to measure IgG and IgA titres against various domains of the nucleocapsid and spike proteins. Potential re-infections in a large, diverse health care worker cohort (N = 300) during the second wave of the pandemic were identified by assessing the IgG anti-N titres before and after the second wave. We assessed epitope coverage and antibody titres between the 'single infection' and 're-infection' groups. Clear differences were observed in the breadth of the anti-N response before the second wave, with the epitope coverage for both IgG (p = 0.019) and IgA (p = 0.015) being significantly increased in those who did not become re-infected compared to those who did. Additionally, the IgG anti-N (p = 0.004) and anti-S titres (p = 0.018) were significantly higher in those not re-infected. These results highlight the importance of the breadth of elicited antibody epitope coverage following natural infection in protection from re-infection and disease in the COVID-19 pandemic.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , Epitopos , Imunoglobulina G , Pandemias , Nucleocapsídeo , Reinfecção , Imunoglobulina A
4.
J Agric Food Chem ; 70(46): 14679-14692, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36351177

RESUMO

Garlic is a medicinal plant and spice that has been used for millennia for its health-promoting effects. These medicinal properties are associated with low molecular weight organosulfur compounds, produced following the crushing of garlic cloves. One of these compounds, ajoene, is proposed to act by S-thioallylating cysteine residues on target proteins whose identification in cancer cells holds great promise for understanding mechanistic aspects of ajoene's cancer cell cytotoxicity. To this end, an ajoene analogue (called biotin-ajoene, BA), containing a biotin affinity tag, was designed as an activity-based probe specific for the protein targets of ajoene in MDA-MB-231 breast cancer cells. BA was synthesized via a convergent "click" strategy and found to retain its cytotoxicity against MDA-MB-231 cells compared to ajoene. Widespread biotinylation of proteins was found to occur via disulfide bond formation in a dose-dependent manner, and the biotin-ajoene probe was found to share the same protein targets as its parent compound, ajoene. The biotinylated proteins were affinity-purified from the treated MDA-MB-231 cell lysate using streptavidin-coated magnetic beads followed by an on-bead reduction, alkylation, and digestion to liberate the peptide fragments, which were analyzed by liquid chromatography tandem mass chromatography. A total of 600 protein targets were identified, among which 91% overlapped with proteins with known protein cysteine modification (PCM) sites. The specific sites were enriched for those susceptible to S-glutathionylation (-SSG) (16%), S-sulfhydration (-SSH) (20%), S-sulfenylation (-SOH) (22%), and S-nitrosylation (-SNO) (31%). As target validation, both ajoene and a dansylated ajoene (DP) were found to S-thiolate the pure recombinant forms of glutathione S-transferase pi 1 (GSTP1) and protein disulfide isomerase (PDI), and the ajoene analogue DP was found to be a more potent inhibitor than 5,5-dithio-bis-(2-nitrobenzoic acid) (DTNB). Pathway analysis elucidated that ajoene targets functional and signaling pathways that are implicated in cancer cell survival, specifically cellular processes, metabolism, and genetic information processing pathways. The results of this study provide mechanistic insights into the character of the anti-cancer activity of the natural dietary compound ajoene.


Assuntos
Neoplasias da Mama , Alho , Humanos , Feminino , Proteômica , Cisteína/metabolismo , Biotina , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Dissulfetos/farmacologia , Dissulfetos/química , Sulfóxidos , Alho/química , Antioxidantes
5.
ACS Sens ; 7(5): 1403-1418, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35561012

RESUMO

The recent surge in infectious disease-causing pathogens, resulting in global catastrophe, has merited a pivotal quest toward point-of-care (POC) diagnostics. Mycobacterium tuberculosis (MTB) is still the top bacterium-based infectious disease-causing pathogen worldwide. In a concerted effort toward simplifying and decentralizing the discriminatory screening of MTB causing pathogens, electrochemical surface-enhanced Raman scattering (EC-SERS) was adopted to create a customized screening tool. The development strategy combined five key factors, including (i) a simplified Tollens'-based chemical synthesis method for bulk supply of silver nanoparticles, (ii) the deliberate surface modification of nanoparticles with carefully selected polyelectrolytes to resemble the conditioning layer usually found on a natural substratum, (iii) uniform SERS-active films formed through simple unprogrammed assembly, (iv) the controlled manipulation of the local electric field through applied voltage using a technique that does not conform to the limitations of classical EC-SERS, and (v) the inherent specificity of the target-specific SERS vibrational signature. The EC-SERS platform was able to discriminatively detect and identify TB-derived mycobacteria, including three clinically relevant MTB strains, TB-H37Rv, TB-HN878, and TB-CDC1551. Moreover, a customized voltage stepping protocol, compatible with either the inclusion of a short preincubation step or with in situ EC-SERS is illustrated. From the obtained SERS vibrational signatures, a band indicating a mode unique to TB-derived/TB-affiliated mycobacteria and thus not observed for other bacterial types used in this study was illustrated. Furthermore, provisional investigation, done as prelude for assessing the potential for translational adaptability of the EC-SERS technique toward POC clinical settings for sputum and urine specimens, was carried out.


Assuntos
Nanopartículas Metálicas , Mycobacterium tuberculosis , Técnicas de Tipagem Bacteriana , Humanos , Prata , Análise Espectral Raman/métodos
6.
Nature ; 602(7898): 654-656, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35016196

RESUMO

The emergence of the SARS-CoV-2 variant of concern Omicron (Pango lineage B.1.1.529), first identified in Botswana and South Africa, may compromise vaccine effectiveness and lead to re-infections1. Here we investigated Omicron escape from neutralization by antibodies from South African individuals vaccinated with Pfizer BNT162b2. We used blood samples taken soon after vaccination from individuals who were vaccinated and previously infected with SARS-CoV-2 or vaccinated with no evidence of previous infection. We isolated and sequence-confirmed live Omicron virus from an infected person and observed that Omicron requires the angiotensin-converting enzyme 2 (ACE2) receptor to infect cells. We compared plasma neutralization of Omicron relative to an ancestral SARS-CoV-2 strain and found that neutralization of ancestral virus was much higher in infected and vaccinated individuals compared with the vaccinated-only participants. However, both groups showed a 22-fold reduction in vaccine-elicited neutralization by the Omicron variant. Participants who were vaccinated and had previously been infected exhibited residual neutralization of Omicron similar to the level of neutralization of the ancestral virus observed in the vaccination-only group. These data support the notion that reasonable protection against Omicron may be maintained using vaccination approaches.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacina BNT162/imunologia , Evasão da Resposta Imune/imunologia , Testes de Neutralização , SARS-CoV-2/imunologia , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Linhagem Celular , Chlorocebus aethiops , Humanos , Mutação , SARS-CoV-2/classificação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo
7.
Clin Infect Dis ; 75(1): e857-e864, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34893824

RESUMO

BACKGROUND: People living with HIV (PLWH) have been reported to have a higher risk of more severe COVID-19 disease and death. We assessed the ability of the Ad26.CoV2.S vaccine to elicit neutralizing activity against the Delta variant in PLWH relative to HIV-negative individuals. We also examined effects of HIV status and suppression on Delta neutralization response in SARS-CoV-2-infected unvaccinated participants. METHODS: We enrolled participants who were vaccinated through the SISONKE South African clinical trial of the Ad26.CoV2.S vaccine in healthcare workers (HCWs). PLWH in this group had well-controlled HIV infection. We also enrolled unvaccinated participants previously infected with SARS-CoV-2. Neutralization capacity was assessed by a live virus neutralization assay of the Delta variant. RESULTS: Most Ad26.CoV2.S vaccinated HCWs were previously infected with SARS-CoV-2. In this group, Delta variant neutralization was 9-fold higher compared with the infected-only group and 26-fold higher relative to the vaccinated-only group. No decrease in Delta variant neutralization was observed in PLWH relative to HIV-negative participants. In contrast, SARS-CoV-2-infected, unvaccinated PLWH showed 7-fold lower neutralization and a higher frequency of nonresponders, with the highest frequency of nonresponders in people with HIV viremia. Vaccinated-only participants showed low neutralization capacity. CONCLUSIONS: The neutralization response of the Delta variant following Ad26.CoV2.S vaccination in PLWH with well-controlled HIV was not inferior to HIV-negative participants, irrespective of past SARS-CoV-2 infection. In SARS-CoV-2-infected and nonvaccinated participants, HIV infection reduced the neutralization response to SARS-CoV-2, with the strongest reduction in HIV viremic individuals.


Assuntos
Ad26COVS1 , COVID-19 , Infecções por HIV , Ad26COVS1/administração & dosagem , Ad26COVS1/efeitos adversos , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , HIV , Infecções por HIV/complicações , Humanos , SARS-CoV-2 , Vacinação
8.
medRxiv ; 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34909788

RESUMO

The emergence of SARS-CoV-2 Omicron, first identified in Botswana and South Africa, may compromise vaccine effectiveness and the ability of antibodies triggered by previous infection to protect against re-infection (1). Here we investigated whether Omicron escapes antibody neutralization in South Africans, either previously SARS-CoV-2 infected or uninfected, who were vaccinated with Pfizer BNT162b2. We also investigated if Omicron requires the ACE2 receptor to infect cells. We isolated and sequence confirmed live Omicron virus from an infected person in South Africa and compared plasma neutralization of this virus relative to an ancestral SARS-CoV-2 strain with the D614G mutation, observing that Omicron still required ACE2 to infect. For neutralization, blood samples were taken soon after vaccination, so that vaccine elicited neutralization was close to peak. Neutralization capacity of the D614G virus was much higher in infected and vaccinated versus vaccinated only participants but both groups had 22-fold Omicron escape from vaccine elicited neutralization. Previously infected and vaccinated individuals had residual neutralization predicted to confer 73% protection from symptomatic Omicron infection, while those without previous infection were predicted to retain only about 35%. Both groups were predicted to have substantial protection from severe disease. These data support the notion that high neutralization capacity elicited by a combination of infection and vaccination, and possibly boosting, could maintain reasonable effectiveness against Omicron. A waning neutralization response is likely to decrease vaccine effectiveness below these estimates. However, since protection from severe disease requires lower neutralization levels and involves T cell immunity, such protection may be maintained.

9.
Viruses ; 13(5)2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33925055

RESUMO

The COVID-19 pandemic has affected all individuals across the globe in some way. Despite large numbers of reported seroprevalence studies, there remains a limited understanding of how the magnitude and epitope utilization of the humoral immune response to SARS-CoV-2 viral anti-gens varies within populations following natural infection. Here, we designed a quantitative, multi-epitope protein microarray comprising various nucleocapsid protein structural motifs, including two structural domains and three intrinsically disordered regions. Quantitative data from the microarray provided complete differentiation between cases and pre-pandemic controls (100% sensitivity and specificity) in a case-control cohort (n = 100). We then assessed the influence of disease severity, age, and ethnicity on the strength and breadth of the humoral response in a multi-ethnic cohort (n = 138). As expected, patients with severe disease showed significantly higher antibody titers and interestingly also had significantly broader epitope coverage. A significant increase in antibody titer and epitope coverage was observed with increasing age, in both mild and severe disease, which is promising for vaccine efficacy in older individuals. Additionally, we observed significant differences in the breadth and strength of the humoral immune response in relation to ethnicity, which may reflect differences in genetic and lifestyle factors. Furthermore, our data enabled localization of the immuno-dominant epitope to the C-terminal structural domain of the viral nucleocapsid protein in two independent cohorts. Overall, we have designed, validated, and tested an advanced serological assay that enables accurate quantitation of the humoral response post natural infection and that has revealed unexpected differences in the magnitude and epitope utilization within a population.


Assuntos
Anticorpos Antivirais/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Adolescente , Adulto , Antígenos Virais/imunologia , COVID-19/epidemiologia , COVID-19/virologia , Teste Sorológico para COVID-19 , Estudos de Casos e Controles , Estudos de Coortes , Epitopos , Etnicidade , Feminino , Humanos , Imunidade Humoral , Imunoglobulina G/imunologia , Masculino , Pessoa de Meia-Idade , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/imunologia , Pandemias , SARS-CoV-2/genética , Sensibilidade e Especificidade , Estudos Soroepidemiológicos , Índice de Gravidade de Doença , Adulto Jovem
10.
Biochim Biophys Acta ; 1860(7): 1439-49, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27057965

RESUMO

BACKGROUND: Garlic has been used for centuries in folk medicine for its health promoting and cancer preventative properties. The bioactive principles in crushed garlic are allyl sulphur compounds which are proposed to chemically react through (i) protein S-thiolation and (ii) production of ROS. METHODS: A collection of R-propyl disulphide and R-thiosulfonate compounds were synthesised to probe the importance of thiolysis and ROS generation in the cytotoxicity of garlic-related compounds in WHCO1 oesophageal cancer cells. RESULTS: A significant correlation (R(2)=0.78, Fcrit (7,1) α=0.005) was found between the cytotoxicity IC(50) and the leaving group pK(a) of the R-propyl disulphides and thiosulfonates, supporting a mechanism that relies on the thermodynamics of a mixed disulphide exchange reaction. Disulphide (1) and thiosulfonate (11) were further evaluated mechanistically and found to induce G(2)/M cell-cycle arrest and apoptosis, inhibit cell proliferation, and generate ROS. When the ROS produced by 1 and 11 were quenched with Trolox, ascorbic acid or N-acetyl cysteine (NAC), only NAC was found to counter the cytotoxicity of both compounds. However, NAC was found to chemically react with 11 through mixed disulphide formation, providing an explanation for this apparent inhibitory result. CONCLUSION: Cellular S-thiolation by garlic related disulphides appears to be the cause of cytotoxicity in WHCO1 cells. Generation of ROS appears to only play a secondary role. GENERAL SIGNIFICANCE: Our findings do not support ROS production causing the cytotoxicity of garlic-related disulphides in WHCO1 cells. Importantly, it was found that the popular ROS inhibitor NAC interferes with the assay.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Dissulfetos/farmacologia , Neoplasias Esofágicas/tratamento farmacológico , Alho , Espécies Reativas de Oxigênio/metabolismo , Compostos de Sulfidrila/metabolismo , Ácidos Tiossulfônicos/farmacologia , Antineoplásicos Fitogênicos/síntese química , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dissulfetos/síntese química , Relação Dose-Resposta a Droga , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Estrutura Molecular , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Ácidos Tiossulfônicos/síntese química , Fatores de Tempo
11.
Oncotarget ; 7(12): 13945-64, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26885621

RESUMO

There is a growing need for high throughput diagnostic tools for early diagnosis and treatment monitoring of prostate cancer (PCa) in Africa. The role of cancer-testis antigens (CTAs) in PCa in men of African descent is poorly researched. Hence, we aimed to elucidate the role of 123 Tumour Associated Antigens (TAAs) using antigen microarray platform in blood samples (N = 67) from a South African PCa, Benign prostatic hyperplasia (BPH) and disease control (DC) cohort. Linear (fold-over-cutoff) and differential expression quantitation of autoantibody signal intensities were performed. Molecular signatures of candidate PCa antigen biomarkers were identified and analyzed for ethnic group variation. Potential cancer diagnostic and immunotherapeutic inferences were drawn. We identified a total of 41 potential diagnostic/therapeutic antigen biomarkers for PCa. By linear quantitation, four antigens, GAGE1, ROPN1, SPANXA1 and PRKCZ were found to have higher autoantibody titres in PCa serum as compared with BPH where MAGEB1 and PRKCZ were highly expressed. Also, p53 S15A and p53 S46A were found highly expressed in the disease control group. Statistical analysis by differential expression revealed twenty-four antigens as upregulated in PCa samples, while 11 were downregulated in comparison to BPH and DC (FDR = 0.01). FGFR2, COL6A1and CALM1 were verifiable biomarkers of PCa analysis using urinary shotgun proteomics. Functional pathway annotation of identified biomarkers revealed similar enrichment both at genomic and proteomic level and ethnic variations were observed. Cancer antigen arrays are emerging useful in potential diagnostic and immunotherapeutic antigen biomarker discovery.


Assuntos
Antígenos de Neoplasias/sangue , Biomarcadores Tumorais/sangue , Próstata/metabolismo , Hiperplasia Prostática/sangue , Neoplasias da Próstata/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Autoanticorpos/sangue , Estudos de Casos e Controles , Estudos de Coortes , Detecção Precoce de Câncer , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Prognóstico , Hiperplasia Prostática/diagnóstico , Hiperplasia Prostática/epidemiologia , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/epidemiologia , Análise Serial de Proteínas , Proteômica , África do Sul/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...