Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Public Health ; 24(1): 182, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225567

RESUMO

BACKGROUND: Long-term care facilities (LTCFs) are vulnerable to disease outbreaks. Here, we jointly analyze SARS-CoV-2 genomic and paired epidemiologic data from LTCFs and surrounding communities in Washington state (WA) to assess transmission patterns during 2020-2022, in a setting of changing policy. We describe sequencing efforts and genomic epidemiologic findings across LTCFs and perform in-depth analysis in a single county. METHODS: We assessed genomic data representativeness, built phylogenetic trees, and conducted discrete trait analysis to estimate introduction sizes over time, and explored selected outbreaks to further characterize transmission events. RESULTS: We found that transmission dynamics among cases associated with LTCFs in WA changed over the course of the COVID-19 pandemic, with variable introduction rates into LTCFs, but decreasing amplification within LTCFs. SARS-CoV-2 lineages circulating in LTCFs were similar to those circulating in communities at the same time. Transmission between staff and residents was bi-directional. CONCLUSIONS: Understanding transmission dynamics within and between LTCFs using genomic epidemiology on a broad scale can assist in targeting policies and prevention efforts. Tracking facility-level outbreaks can help differentiate intra-facility outbreaks from high community transmission with repeated introduction events. Based on our study findings, methods for routine tree building and overlay of epidemiologic data for hypothesis generation by public health practitioners are recommended. Discrete trait analysis added valuable insight and can be considered when representative sequencing is performed. Cluster detection tools, especially those that rely on distance thresholds, may be of more limited use given current data capture and timeliness. Importantly, we noted a decrease in data capture from LTCFs over time. Depending on goals for use of genomic data, sentinel surveillance should be increased or targeted surveillance implemented to ensure available data for analysis.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Pandemias/prevenção & controle , SARS-CoV-2/genética , Washington/epidemiologia , Assistência de Longa Duração/métodos , Filogenia , Genômica
2.
Cell Chem Biol ; 31(2): 249-264.e7, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37944523

RESUMO

Iron overload, characterized by accumulation of iron in tissues, induces a multiorgan toxicity whose mechanisms are not fully understood. Using cultured cell lines, Caenorhabditis elegans, and mice, we found that ferroptosis occurs in the context of iron-overload-mediated damage. Exogenous oleic acid protected against iron-overload-toxicity in cell culture and Caenorhabditis elegans by suppressing ferroptosis. In mice, oleic acid protected against FAC-induced liver lipid peroxidation and damage. Oleic acid changed the cellular lipid composition, characterized by decreased levels of polyunsaturated fatty acyl phospholipids and decreased levels of ether-linked phospholipids. The protective effect of oleic acid in cells was attenuated by GW6471 (PPAR-α antagonist), as well as in Caenorhabditis elegans lacking the nuclear hormone receptor NHR-49 (a PPAR-α functional homologue). These results highlight ferroptosis as a driver of iron-overload-mediated damage, which is inhibited by oleic acid. This monounsaturated fatty acid represents a potential therapeutic approach to mitigating organ damage in iron overload individuals.


Assuntos
Ferroptose , Sobrecarga de Ferro , Animais , Camundongos , Caenorhabditis elegans , Ácido Oleico/farmacologia , Receptores Ativados por Proliferador de Peroxissomo , Sobrecarga de Ferro/tratamento farmacológico , Ferro , Éteres Fosfolipídicos
3.
Cell Chem Biol ; 31(4): 805-819.e9, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38061356

RESUMO

Transcription factors have proven difficult to target with small molecules because they lack pockets necessary for potent binding. Disruption of protein expression can suppress targets and enable therapeutic intervention. To this end, we developed a drug discovery workflow that incorporates cell-line-selective screening and high-throughput expression profiling followed by regulatory network analysis to identify compounds that suppress regulatory drivers of disease. Applying this approach to neuroblastoma (NBL), we screened bioactive molecules in cell lines representing its MYC-dependent (MYCNA) and mesenchymal (MES) subtypes to identify selective compounds, followed by PLATESeq profiling of treated cells. This revealed compounds that disrupt a sub-network of MYCNA-specific regulatory proteins, resulting in MYCN degradation in vivo. The top hit was isopomiferin, a prenylated isoflavonoid that inhibited casein kinase 2 (CK2) in cells. Isopomiferin and its structural analogs inhibited MYC and MYCN in NBL and lung cancer cells, highlighting the general MYC-inhibiting potential of this unique scaffold.

4.
ACS Med Chem Lett ; 14(12): 1664-1672, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38116412

RESUMO

We previously identified the natural products isopomiferin and pomiferin as powerful, indirect MYCN-ablating agents. In this work, we expand on their mechanism of action and find that casein kinase 2 (CK2), phosphoinositide 3-kinase (PI3K), checkpoint kinase 1 (CHK1) and serine/threonine protein kinase 38-like (STK38L), as well as STK38, work synchronously to create a field effect that maintains MYCN stability. By systematically inhibiting these kinases, we degraded MYCN and induced cell death. Additionally, we synthesized and tested several simpler and more cost-effective pomiferin analogues, which successfully emulated the compound's MYCN ablating activity. Our work identified and characterized key kinases that can be targeted to interfere with the stability of the MYCN protein in NBL cells, demonstrating the efficacy of an indirect approach to targeting "undruggable" cancer drivers.

5.
Nat Chem Biol ; 19(6): 719-730, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36747055

RESUMO

Ferroptosis, an iron-dependent form of cell death driven by lipid peroxidation, provides a potential treatment avenue for drug-resistant cancers and may play a role in the pathology of some degenerative diseases. Identifying the subcellular membranes essential for ferroptosis and the sequence of their peroxidation will illuminate drug discovery strategies and ferroptosis-relevant disease mechanisms. In this study, we employed fluorescence and stimulated Raman scattering imaging to examine the structure-activity-distribution relationship of ferroptosis-modulating compounds. We found that, although lipid peroxidation in various subcellular membranes can induce ferroptosis, the endoplasmic reticulum (ER) membrane is a key site of lipid peroxidation. Our results suggest an ordered progression model of membrane peroxidation during ferroptosis that accumulates initially in the ER membrane and later in the plasma membrane. Thus, the design of ER-targeted inhibitors and inducers of ferroptosis may be used to optimally control the dynamics of lipid peroxidation in cells undergoing ferroptosis.


Assuntos
Ferroptose , Peroxidação de Lipídeos/fisiologia , Morte Celular , Membrana Celular/metabolismo , Ferro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA