Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Entomol ; 50(6): 1446-1454, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34396396

RESUMO

Although Aphrophora nr. permutata (Hemiptera: Aphrophoridae) is a reported vector of the plant pathogen Xylella fastidiosa (Wells) (Xanthomonadales: Xanthomonadaceae), its ecology and role in Pierce's disease dynamics in coastal California vineyards are poorly understood. From 2016 to 2020, we surveyed the abundance of A. nr. permutata nymphs among potential host plants along the vineyard floor, the vineyard edges, and adjacent vegetation in vineyards in Napa and Sonoma county. In 2019 and 2020, vineyards adjacent to woodland habitat hosted larger A. nr. permutata populations than those next to riparian habitat, while in 2017 and 2018, the nymphal populations were similar among riparian and woodland sites. Among 2020 plant cover taxa, nymph abundance was positively associated with Helminthotheca echioides, Vicia sativa, and Daucus carota cover and negatively associated with Taraxacum officinale cover. In 2018 and 2019, we also tracked early-season occurrence and development of A. nr. permutata nymphs among potential host plants. Analyses showed a significant effect of site, year, and plant taxa on the first detection of nymphs and a significant effect of site and year on the estimated development time between first and fifth instars. In 2019, we conducted grapevine to grapevine X. fastidiosa transmission experiments with individuals and groups of five A. nr. permutata adults. In the transmission experiment, 5% (3 of 60) individual A. nr. permutata and 7.7% (1 of 13) of groups successfully transmitted X. fastidiosa. This study provides preliminary evidence of potential host plant associations with A. nr. permutata abundance and phenology that should be explored further with field and greenhouse-based approaches.


Assuntos
Hemípteros , Vitis , Xylella , Animais , Ecologia , Fazendas , Ninfa , Doenças das Plantas
2.
J Sci Food Agric ; 100(4): 1436-1447, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31742703

RESUMO

BACKGROUND: Grapevine red blotch virus (GRBV) is a recently discovered DNA virus, which was demonstrated to be responsible for grapevine red blotch disease (GRBD). Its presence has been confirmed in the United States, Canada, Mexico, and South Korea in white and red Vitis vinifera cultivars, including Chardonnay. It has been shown that the three-cornered alfalfa treehopper (Spissistilus festinus) was able to both acquire the GRBV from a grapevine infected and transmit it to healthy grapevines in glasshouse conditions. Studies found that GRBD impacts fruit price, grapevine physiology, and grape berry composition and metabolism in red cultivars. This study evaluated the impact of GRBD on V. vinifera L. Chardonnay grape and wine composition and sensory properties from one vineyard during the 2014, 2015 and 2016 seasons. RESULTS: Grapes from symptomatic red blotch diseased grapevines were lower in total soluble solids, flavan-3-ol, and total phenolic content, and higher in flavonol content when compared to grapes from healthy grapevines. Wines made with grapes from symptomatic grapevines resulted mostly in lower ethanol content and higher pH when compared to wines made from healthy grapevines. Analysis of volatile compounds and descriptive analysis demonstrated that GRBD can impact wine style by altering aroma, flavor, and mouthfeel attributes. CONCLUSIONS: The impacts of GRBD on grape composition directly influenced wine chemistry. The decreased ethanol content impacted not only the levels of volatile compounds but the sensory perception during descriptive analysis. The extent of GRBD impact on the grape composition and wine composition and sensory attributes varied between seasons. © 2019 Society of Chemical Industry.


Assuntos
Frutas/química , Geminiviridae/fisiologia , Doenças das Plantas/virologia , Vitis/virologia , Vinho/análise , Vinho/virologia , Antocianinas/química , Antocianinas/metabolismo , Aromatizantes/química , Aromatizantes/metabolismo , Frutas/metabolismo , Humanos , Fenóis/química , Fenóis/metabolismo , Estações do Ano , Paladar , Vitis/química , Vitis/metabolismo
3.
J Agric Food Chem ; 67(19): 5496-5511, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31013081

RESUMO

Grapevine red blotch disease (GRBD) is a recently recognized viral disease that affects grapevines ( Vitis vinifera L.). Currently little is known about its impact on grape composition. This study focused on the impact of GRBD on grape primary and secondary metabolites (mainly phenolic compounds) of three Vitis vinifera L. cultivars during two seasons. Grapes from symptomatic red blotch diseased vines (RB (+)) mostly had lower concentration of total soluble solids (TSS) and higher titratable acidity (TA) levels when compared to grapes from healthy vines (RB (-)) at harvest. GRBD impacted grape phenolic composition by mostly decreasing anthocyanin and increasing flavonol and proanthocyanidin (PA) contents in berry skins. No major impacts were observed on seed phenolics. RB (+) grapes contained more amino and carboxylic acids, while RB (-) grapes contained more oligosaccharides, polyols, and some specific monosaccharides at harvest. The impact of GRBD on grape composition was variable and dependent on the cultivar, site, and season.


Assuntos
Frutas/química , Doenças das Plantas/virologia , Vitis/química , Antocianinas/análise , Cor , Frutas/virologia , Geminiviridae/fisiologia , Fenóis/análise , Proantocianidinas/análise , Sementes/química , Vitis/classificação , Vitis/virologia
4.
J Agric Food Chem ; 67(9): 2437-2448, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30721055

RESUMO

Grapevine red blotch virus (GRBV) is suspected to alter berry ripening and chemistry. This study performed a physiological characterization of GRBV infected grapevines with attention to the factors leading to chemical changes during ripening of Cabernet Sauvignon in two rootstocks, 110R and 420A. RB(+) grapevines had transiently lower net photosynthesis; however, berry total soluble solids (TSS) accumulation was consistently reduced in the two years of study. Accumulation of anthocyanins and loss of titratable acidity and proanthocyanins were also delayed in RB(+) plants. However, the comparison of samples with the same TSS led to lower pH and anthocyanins content. The reduction in carbon import into berries under mild and transient reductions in carbon fixation suggested an impairment of translocation mechanisms with RB(+), leading into a desynchronization of ripening-related processes.


Assuntos
Carbono/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Geminiviridae , Doenças das Plantas/virologia , Vitis/virologia , Antocianinas/metabolismo , Ciclo do Carbono/fisiologia , Frutas/química , Concentração de Íons de Hidrogênio , Fotossíntese , Vitis/fisiologia
5.
PLoS One ; 13(12): e0208862, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30540844

RESUMO

Grapevine leafroll-associated virus 3 (GLRaV-3) is the most widely prevalent and economically important of the complex of RNA viruses associated with grapevine leafroll disease (GLD). Phylogenetic studies have grouped GLRaV-3 isolates into nine different monophyletic groups and four supergroups, making GLRaV-3 a genetically highly diverse virus species. In addition, new divergent variants have been discovered recently around the world. Accurate identification of the virus is an essential component in the management and control of GLRaV-3; however, the diversity of GLRaV-3, coupled with the limited sequence information, have complicated the development of a reliable detection assay. In this study, GLRaV-3 sequence data available in GenBank and those generated at Foundation Plant Services, University of California-Davis, was used to develop a new RT-qPCR assay with the capacity to detect all known GLRaV-3 variants. The new assay, referred to as FPST, was challenged against samples that included plants infected with different GLRaV-3 variants and originating from 46 countries. The FPST assay detected all known GLRaV-3 variants, including the highly divergent variants, by amplifying a small highly conserved region in the 3' untranslated terminal region (UTR) of the virus genome. The reliability of the new RT-qPCR assay was confirmed by an enzyme linked immunosorbent assay (ELISA) that can detect all known GLRaV-3 variants characterized to date. Additionally, three new GLRaV-3 divergent variants, represented by four isolates, were identified using a hierarchical testing process involving the FPST assay, GLRaV-3 variant-specific assays and high-throughput sequencing analysis. These variants were distantly related to groups I, II, III, V, VI, VII and IX, but much similar to GLRaV-3 variants with no assigned group; thus, they may represent new clades. Finally, based on the phylogenetic analysis, a new GLRaV-3 subclade is proposed and named as group X.


Assuntos
Regiões 3' não Traduzidas , Closteroviridae , Variação Genética , Genoma Viral , Vitis/virologia , Closteroviridae/classificação , Closteroviridae/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vitis/genética
6.
Mol Plant Pathol ; 19(2): 490-503, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28218463

RESUMO

Grapevines, like other perennial crops, are affected by so-called 'trunk diseases', which damage the trunk and other woody tissues. Mature grapevines typically contract more than one trunk disease and often multiple grapevine trunk pathogens (GTPs) are recovered from infected tissues. The co-existence of different GTP species in complex and dynamic microbial communities complicates the study of the molecular mechanisms underlying disease development, especially under vineyard conditions. The objective of this study was to develop and optimize a community-level transcriptomics (i.e. metatranscriptomics) approach that could monitor simultaneously the virulence activities of multiple GTPs in planta. The availability of annotated genomes for the most relevant co-infecting GTPs in diseased grapevine wood provided the unprecedented opportunity to generate a multi-species reference for the mapping and quantification of DNA and RNA sequencing reads. We first evaluated popular sequence read mappers using permutations of multiple simulated datasets. Alignment parameters of the selected mapper were optimized to increase the specificity and sensitivity for its application to metagenomics and metatranscriptomics analyses. Initial testing on grapevine wood experimentally inoculated with individual GTPs confirmed the validity of the method. Using naturally infected field samples expressing a variety of trunk disease symptoms, we show that our approach provides quantitative assessments of species composition, as well as genome-wide transcriptional profiling of potential virulence factors, namely cell wall degradation, secondary metabolism and nutrient uptake for all co-infecting GTPs.


Assuntos
Ascomicetos/patogenicidade , Doenças das Plantas/microbiologia , Vitis/metabolismo , Vitis/microbiologia , Ascomicetos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Metagenômica , Virulência
7.
J Exp Bot ; 68(5): 1225-1238, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28338755

RESUMO

Grapevine red blotch-associated virus (GRBaV) is a major threat to the wine industry in the USA. GRBaV infections (aka red blotch disease) compromise crop yield and berry chemical composition, affecting the flavor and aroma properties of must and wine. In this study, we combined genome-wide transcriptional profiling with targeted metabolite analyses and biochemical assays to characterize the impact of the disease on red-skinned berry ripening and metabolism. Using naturally infected berries collected from two vineyards, we were able to identify consistent berry responses to GRBaV across different environmental and cultural conditions. Specific alterations of both primary and secondary metabolism occurred in GRBaV-infected berries during ripening. Notably, GRBaV infections of post-véraison berries resulted in the induction of primary metabolic pathways normally associated with early berry development (e.g. thylakoid electron transfer and the Calvin cycle), while inhibiting ripening-associated pathways, such as a reduced metabolic flux in the central and peripheral phenylpropanoid pathways. We show that this metabolic reprogramming correlates with perturbations at multiple regulatory levels of berry development. Red blotch caused the abnormal expression of transcription factors (e.g. NACs, MYBs, and AP2-ERFs) and elements of the post-transcriptional machinery that function during red-skinned berry ripening. Abscisic acid, ethylene, and auxin pathways, which control both the initiation of ripening and stress responses, were also compromised. We conclude that GRBaV infections disrupt normal berry development and stress responses by altering transcription factors and hormone networks, which result in the inhibition of ripening pathways involved in the generation of color, flavor, and aroma compounds.


Assuntos
Geminiviridae/fisiologia , Vitis/virologia , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Frutas/virologia , Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Doenças das Plantas/virologia , Vitis/crescimento & desenvolvimento , Vitis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA