Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38746363

RESUMO

Tumor Necrosis Factor-α (TNF-α) is a proinflammatory cytokine and a master regulator of immune cell function in vertebrates. While previous studies have implicated TNF signaling in invertebrate immunity, the roles of TNF in mosquito innate immunity and vector competence have yet to be explored. Herein, we confirm the identification of a conserved TNF-α pathway in Anopheles gambiae consisting of the TNF-α ligand, Eiger, and its cognate receptors Wengen and Grindelwald. Through gene expression analysis, RNAi, and in vivo injection of recombinant TNF-α, we provide direct evidence for the requirement of TNF signaling in regulating mosquito immune cell function by promoting granulocyte midgut attachment, increased granulocyte abundance, and oenocytoid rupture. Moreover, our data demonstrate that TNF signaling is an integral component of anti-Plasmodium immunity that limits malaria parasite survival. Together, our data support the existence of a highly conserved TNF signaling pathway in mosquitoes that mediates cellular immunity and influences Plasmodium infection outcomes, offering potential new approaches to interfere with malaria transmission by targeting the mosquito host.

2.
bioRxiv ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38617257

RESUMO

Mosquito-borne viruses cause more than 400 million annual infections and place over half of the world's population at risk. Despite this importance, the mechanisms by which arboviruses infect the mosquito host and disseminate to tissues required for transmission are not well understood. Here, we provide evidence that mosquito immune cells, known as hemocytes, play an integral role in the dissemination of dengue virus (DENV) and Zika virus (ZIKV) in the mosquito Aedes aegypti. We establish that phagocytic hemocytes are a focal point for virus infection and demonstrate that these immune cell populations facilitate virus dissemination to the ovaries and salivary glands. Additional transfer experiments confirm that virus-infected hemocytes confer a virus infection to non-infected mosquitoes more efficiently than free virus in acellular hemolymph, revealing that hemocytes are an important tropism to enhance virus dissemination in the mosquito host. These data support a "trojan horse" model of virus dissemination where infected hemocytes transport virus through the hemolymph to deliver virus to mosquito tissues required for transmission and parallels vertebrate systems where immune cell populations promote virus dissemination to secondary sites of infection. In summary, this study significantly advances our understanding of virus infection dynamics in mosquitoes and highlights conserved roles of immune cells in virus dissemination across vertebrate and invertebrate systems.

3.
Traffic Inj Prev ; : 1-6, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38648016

RESUMO

OBJECTIVE: The concentration of drugs in a driver's system can change between an impaired driving arrest or crash and the collection of a biological specimen for drug testing. Accordingly, delays in specimen collection can result in the loss of critical information that has the potential to affect impaired driving prosecution. The objectives of the study were: (1) to identify factors that influence the time between impaired-driving violations and specimen collections (time-to-collection) among crash-involved drivers, and (2) to consider how such delays affect measured concentrations of drugs, particularly with respect to common drug per se limits. METHOD: Study data included blood toxicology results and crash-related information from 8,923 drivers who were involved in crashes and arrested for impaired driving in Wisconsin between 2019 and 2021. Analyses examined how crash timing and severity influenced time-to-collection and the effects of delays in specimen collection on blood alcohol concentrations (BACs) and blood delta-9-tetrahydrocannabinol (THC) concentrations. RESULTS: The mean time-to-collection for the entire sample was 1.80 h. Crash severity had a significant effect on time-to-collection with crashes involving a fatality having the longest duration (M = 2.35 h) followed by injury crashes (M = 2.06 h) and noninjury crashes (M = 1.69 h). Time of day also affected time-to-collection; late night and early morning hours were associated with shorter durations. Both BAC (r = -0.11) and blood THC concentrations (r = -0.16) were significantly negatively correlated with time-to-collection. CONCLUSIONS: Crash severity and the time of day at which a crash occurs can result in delays in the collection of blood specimens after impaired driving arrests. Because drugs often continue to be metabolized and eliminated between arrest and biological specimen collection, measured concentrations may not represent the concentrations of drugs that were present at the time of driving. This has the potential to affect drug-impaired driving prosecution, particularly in jurisdictions whose laws specify per se impairment thresholds.

4.
J Innate Immun ; 16(1): 66-79, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38142680

RESUMO

INTRODUCTION: Hematophagous arthropods can acquire and transmit several pathogens of medical importance. In ticks, the innate immune system is crucial in the outcome between vector-pathogen interaction and overall vector competence. However, the specific immune response(s) elicited by the immune cells known as hemocytes remains largely undefined in Ehrlichia chaffeensis and its competent tick vector, Amblyomma americanum. METHODS: We utilized injection of clodronate liposome to deplete tick granulocytes combined with infection with E. chaffeensis to demonstrate their essential role in microbial infection. RESULTS: Here, we show that granulocytes, professional phagocytic cells, are integral in eliciting immune responses against commensal and pathogen infection. The chemical depletion of granulocytes led to decreased phagocytic efficiency of tissue-associated hemocytes. We demonstrate that E. chaffeensis can infect circulating hemocytes, and both cell-free plasma and hemocytes from E. chaffeensis-infected ticks can establish Ehrlichia infection in recipient ticks. Lastly, we provide evidence to show that granulocytes play a dual role in E. chaffeensis infection. Depleting granulocytic hemocytes increased Ehrlichia load in the salivary gland and midgut tissues. In contrast, granulocyte depletion led to a reduced systemic load of Ehrlichia. CONCLUSION: This study has identified multiple roles for granulocytic hemocytes in the control and systemic dissemination of E. chaffeensis infection.


Assuntos
Ehrlichia chaffeensis , Ehrlichiose , Ixodidae , Animais , Ehrlichia chaffeensis/fisiologia , Amblyomma , Hemócitos , Fagócitos
5.
Sci Rep ; 13(1): 8778, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37258694

RESUMO

Vector-borne, filarial nematode diseases cause significant disease burdens in humans and domestic animals worldwide. Although there is strong direct evidence of parasite-driven immunomodulation of mammalian host responses, there is less evidence of parasite immunomodulation of the vector host. We have previously reported that all life stages of Brugia malayi, a filarial nematode and causative agent of Lymphatic filariasis, secrete extracellular vesicles (EVs). Here we investigate the immunomodulatory effects of microfilariae-derived EVs on the vector host Aedes aegypti. RNA-seq analysis of an Ae. aegypti cell line treated with B. malayi microfilariae EVs showed differential expression of both mRNAs and miRNAs. AAEL002590, an Ae. aegypti gene encoding a serine protease, was shown to be downregulated when cells were treated with biologically relevant EV concentrations in vitro. Injection of adult female mosquitoes with biologically relevant concentrations of EVs validated these results in vivo, recapitulating the downregulation of AAEL002590 transcript. This gene was predicted to be involved in the mosquito phenoloxidase (PO) cascade leading to the canonical melanization response and correspondingly, both suppression of this gene using RNAi and parasite EV treatment reduced PO activity in vivo. Our data indicate that parasite-derived EVs interfere with critical immune responses in the vector host, including melanization.


Assuntos
Aedes , Brugia Malayi , Vesículas Extracelulares , Animais , Humanos , Feminino , Brugia Malayi/genética , Microfilárias/genética , Mosquitos Vetores , Mamíferos
6.
Mol Ecol ; 32(12): 3133-3149, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36912202

RESUMO

The blacklegged tick (Ixodes scapularis (Journal of the Academy of Natural Sciences of Philadelphia, 1821, 2, 59)) is a vector of Borrelia burgdorferi sensu stricto (s.s.) (International Journal of Systematic Bacteriology, 1984, 34, 496), the causative bacterial agent of Lyme disease, part of a slow-moving epidemic of Lyme borreliosis spreading across the northern hemisphere. Well-known geographical differences in the vectorial capacity of these ticks are associated with genetic variation. Despite the need for detailed genetic information in this disease system, previous phylogeographical studies of these ticks have been restricted to relatively few populations or few genetic loci. Here we present the most comprehensive phylogeographical study of genome-wide markers in I. scapularis, conducted by using 3RAD (triple-enzyme restriction-site associated sequencing) and surveying 353 ticks from 33 counties throughout the species' range. We found limited genetic variation among populations from the Northeast and Upper Midwest, where Lyme disease is most common, and higher genetic variation among populations from the South. We identify five spatially associated genetic clusters of I. scapularis. In regions where Lyme disease is increasing in frequency, the I. scapularis populations genetically group with ticks from historically highly Lyme-endemic regions. Finally, we identify 10 variable DNA sites that contribute the most to population differentiation. These variable sites cluster on one of the chromosome-scale scaffolds for I. scapularis and are within identified genes. Our findings illuminate the need for additional research to identify loci causing variation in the vectorial capacity of I. scapularis and where additional tick sampling would be most valuable to further understand disease trends caused by pathogens transmitted by I. scapularis.


Assuntos
Borrelia burgdorferi , Ixodes , Doença de Lyme , Animais , Ixodes/genética , Ixodes/microbiologia , Filogeografia , Doença de Lyme/genética , Doença de Lyme/microbiologia , Borrelia burgdorferi/genética , Bactérias
7.
Front Immunol ; 14: 1094326, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36845157

RESUMO

Introduction: Blood-feeding arthropods rely on robust cellular and humoral immunity to control pathogen invasion and replication. Tick hemocytes produce factors that can facilitate or suppress microbial infection and pathogenesis. Despite the importance of hemocytes in regulating microbial infection, understanding of their basic biology and molecular mechanisms remains limited. Methods: Here we combined histomorphology and functional analysis to identify five distinct phagocytic and non-phagocytic hemocyte populations circulating within the Gulf Coast tick Amblyomma maculatum. Results and discussion: Depletion of phagocytic hemocytes using clodronate liposomes revealed their function in eliminating bacterial infection. We provide the first direct evidence that an intracellular tick-borne pathogen, Rickettsia parkeri, infects phagocytic hemocytes in Am. maculatum to modify tick cellular immune responses. A hemocyte-specific RNA-seq dataset generated from hemocytes isolated from uninfected and R. parkeri-infected partially blood-fed ticks generated ~40,000 differentially regulated transcripts, >11,000 of which were immune genes. Silencing two differentially regulated phagocytic immune marker genes (nimrod B2 and eater-two Drosophila homologs), significantly reduced hemocyte phagocytosis. Conclusion: Together, these findings represent a significant step forward in understanding how hemocytes regulate microbial homeostasis and vector competence.


Assuntos
Ixodidae , Rickettsia , Carrapatos , Animais , Carrapatos/microbiologia , Hemócitos , Ixodidae/microbiologia , Rickettsia/genética , Amblyomma
8.
Front Immunol ; 14: 1305976, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38274813

RESUMO

Introduction: Ticks rely on robust cellular and humoral responses to control microbial infection. However, several aspects of the tick's innate immune system remain uncharacterized, most notably that of the immune cells (called hemocytes), which are known to play a significant role in cellular and humoral responses. Despite the importance of hemocytes in regulating microbial infection, our understanding of their basic biology and molecular mechanisms remains limited. Therefore, we believe that a more detailed understanding of the role of hemocytes in the interactions between ticks and tick-borne microbes is crucial to illuminating their function in vector competence and to help identify novel targets for developing new strategies to block tick-borne pathogen transmission. Methods: This study examined hemocytes from the lone star tick (Amblyomma americanum) at the transcriptomic level using the 10X genomics single-cell RNA sequencing platform to analyze hemocyte populations from unfed, partially blood-fed, and Ehrlichia chaffeensis-infected ticks. The functional role of differentially expressed hemocyte markers in hemocyte proliferation and Ehrlichia dissemination was determined using an RNA interference approach. Results and discussion: Our data exhibit the identification of fourteen distinct hemocyte populations. Our results uncover seven distinct lineages present in uninfected and Ehrlichia-infected hemocyte clusters. The functional characterization of hemocytin, cystatin, fibronectin, and lipocalin demonstrate their role in hemocyte population changes, proliferation, and Ehrlichia dissemination. Conclusion: Our results uncover the tick immune responses to Ehrlichia infection and hematophagy at a single-cell resolution. This work opens a new field of tick innate immunobiology to understand the role of hemocytes, particularly in response to prolonged blood-feeding (hematophagy), and tick-microbial interactions.


Assuntos
Ehrlichia chaffeensis , Ehrlichiose , Ixodidae , Carrapatos , Animais , Ehrlichia chaffeensis/genética , Amblyomma , Imunidade Inata
9.
Front Insect Sci ; 3: 1144072, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38469495

RESUMO

Mosquitoes are the most important animal vector of disease on the planet, transmitting a variety of pathogens of both medical and veterinary importance. Mosquito-borne diseases display distinct seasonal patterns driven by both environmental and biological variables. However, an important, yet unexplored component of these patterns is the potential for seasonal influences on mosquito physiology that may ultimately influence vector competence. To address this question, we selected Culex pipiens, a primary vector of the West Nile virus (WNV) in the temperate United States, to examine the seasonal impacts on mosquito physiology by examining known immune and bacterial components implicated in mosquito arbovirus infection. Semi-field experiments were performed under spring, summer, and late-summer conditions, corresponding to historically low-, medium-, and high-intensity periods of WNV transmission, respectively. Through these experiments, we observed differences in the expression of immune genes and RNA interference (RNAi) pathway components, as well as changes in the distribution and abundance of Wolbachia in the mosquitoes across seasonal cohorts. Together, these findings support the conclusion that seasonal changes significantly influence mosquito physiology and components of the mosquito microbiome, suggesting that seasonality may impact mosquito susceptibility to pathogen infection, which could account for the temporal patterns in mosquito-borne disease transmission.

10.
Commun Biol ; 5(1): 1300, 2022 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-36435882

RESUMO

Reproductive diapause serves as biological mechanism for many insects, including the mosquito Culex pipiens, to overwinter in temperate climates. While Cx. pipiens diapause has been well-studied in the laboratory, the timing and environmental signals that promote diapause under natural conditions are less understood. In this study, we examine laboratory, semi-field, and mosquito surveillance data to define the approximate timeline and seasonal conditions that contribute to Cx. pipiens diapause across the United States. While confirming integral roles of temperature and photoperiod in diapause induction, we also demonstrate the influence of latitude, elevation, and mosquito population genetics in shaping Cx. pipiens diapause incidence across the country. Coinciding with the cessation of WNV activity, these data can have important implications for mosquito control, where targeted efforts prior to diapause induction can decrease mosquito populations and WNV overwintering to reduce mosquito-borne disease incidence the following season.


Assuntos
Culex , Diapausa , Animais , Estados Unidos/epidemiologia , Culex/genética , Diapausa/genética , Estações do Ano , Reprodução , Temperatura
11.
mBio ; 13(6): e0309622, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36445080

RESUMO

During vertebrate infection, obligate intracellular malaria parasites develop within a parasitophorous vacuole, which constitutes the interface between the parasite and its hepatocyte or erythrocyte host cells. To traverse this barrier, Plasmodium spp. utilize a dual-function pore formed by EXP2 for nutrient transport and, in the context of the PTEX translocon, effector protein export across the vacuole membrane. While critical to blood-stage survival, less is known about EXP2/PTEX function in the liver stage, although major differences in the export mechanism are suggested by absence of the PTEX unfoldase HSP101 in the intrahepatic vacuole. Here, we employed the glucosamine-activated glmS ribozyme to study the role of EXP2 during Plasmodium berghei liver-stage development in hepatoma cells. Insertion of the glmS sequence into the exp2 3' untranslated region (UTR) enabled glucosamine-dependent depletion of EXP2 after hepatocyte invasion, allowing separation of EXP2 function during intrahepatic development from a recently reported role in hepatocyte invasion. Postinvasion EXP2 knockdown reduced parasite size and largely abolished expression of the mid- to late-liver-stage marker LISP2. As an orthogonal approach to monitor development, EXP2-glmS parasites and controls were engineered to express nanoluciferase. Activation of glmS after invasion substantially decreased luminescence in hepatoma monolayers and in culture supernatants at later time points corresponding to merosome detachment, which marks the culmination of liver-stage development. Collectively, our findings extend the utility of the glmS ribozyme to study protein function in the liver stage and reveal that EXP2 is important for intrahepatic parasite development, indicating that PTEX components also function at the hepatocyte-parasite interface. IMPORTANCE After the mosquito bite that initiates a Plasmodium infection, parasites first travel to the liver and develop in hepatocytes. This liver stage is asymptomatic but necessary for the parasite to transition to the merozoite form, which infects red blood cells and causes malaria. To take over their host cells, avoid immune defenses, and fuel their growth, these obligately intracellular parasites must import nutrients and export effector proteins across a vacuole membrane in which they reside. In the blood stage, these processes depend on a translocon called PTEX, but it is unclear if PTEX also functions during the liver stage. Here, we adapted the glmS ribozyme to control expression of EXP2, the membrane pore component of PTEX, during the liver stage of the rodent malaria parasite Plasmodium berghei. Our results show that EXP2 is important for intracellular development in the hepatocyte, revealing that PTEX components are also functionally important during liver-stage infection.


Assuntos
Eritrócitos , Hepatócitos , Malária , Plasmodium berghei , Proteínas de Protozoários , Carcinoma Hepatocelular , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Neoplasias Hepáticas , Malária/genética , Malária/metabolismo , Malária/parasitologia , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Plasmodium falciparum/genética , Transporte Proteico/genética , Transporte Proteico/fisiologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , RNA Catalítico/metabolismo , Animais , Camundongos , Hepatócitos/metabolismo , Hepatócitos/parasitologia
12.
Arch Virol ; 167(12): 2577-2590, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36056958

RESUMO

To increase our understanding of the diversity of the mosquito virome, 6956 mosquitoes of five species (Culex erraticus, Culex pipiens, Culex restuans, Culex tarsalis, and Culex territans) collected in Iowa in the United States in 2017 and 2020 were assayed for novel viruses by performing polyethylene glycol precipitation, virus isolation in cell culture, and unbiased high-throughput sequencing. A novel virus, provisionally named "Walnut Creek virus", was isolated from Cx. tarsalis, and its genomic sequence and organization are characteristic of viruses in the genus Hapavirus (family Rhabdoviridae). Replication of Walnut Creek virus occurred in avian, mammalian, and mosquito, but not tick, cell lines. A novel virus was also isolated from Cx. restuans, and partial genome sequencing revealed that it is distantly related to an unclassified virus of the genus Phytoreovirus (family Sedoreoviridae). Two recognized viruses were also isolated: Culex Y virus (family Birnaviridae) and Houston virus (family Mesoniviridae). We also identified sequences of eight novel viruses from six families (Amalgaviridae, Birnaviridae, Partitiviridae, Sedoreoviridae, Tombusviridae, and Totiviridae), two viruses that do not belong to any established families, and many previously recognized viruses. In summary, we provide evidence of multiple novel and recognized viruses in Culex spp. mosquitoes in the United States.


Assuntos
Culex , Culicidae , Vírus de RNA , Rhabdoviridae , Vírus , Humanos , Animais , Estados Unidos , Rhabdoviridae/genética , Mamíferos
13.
Insects ; 13(9)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36135459

RESUMO

Since its introduction to North America in 1999, the West Nile virus (WNV) has resulted in over 50,000 human cases and 2400 deaths. WNV transmission is maintained via mosquito vectors and avian reservoir hosts, yet mosquito and avian infections are not uniform across ecological landscapes. As a result, it remains unclear whether the ecological communities of the vectors or reservoir hosts are more predictive of zoonotic risk at the microhabitat level. We examined this question in central Iowa, representative of the midwestern United States, across a land use gradient consisting of suburban interfaces with natural and agricultural habitats. At eight sites, we captured mosquito abundance data using New Jersey light traps and monitored bird communities using visual and auditory point count surveys. We found that the mosquito minimum infection rate (MIR) was better predicted by metrics of the mosquito community than metrics of the bird community, where sites with higher proportions of Culex pipiens group mosquitoes during late summer (after late July) showed higher MIRs. Bird community metrics did not significantly influence mosquito MIRs across sites. Together, these data suggest that the microhabitat suitability of Culex vector species is of greater importance than avian community composition in driving WNV infection dynamics at the urban and agricultural interface.

14.
Sci Rep ; 12(1): 2143, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35136169

RESUMO

Aedes albopictus is a competent vector of several arboviruses that has spread throughout the United States over the last three decades. With the emergence of Zika virus in the Americas in 2015-2016 and an increased need to understand the current distributions of Ae. albopictus in the US, we initiated surveillance efforts to determine the abundance of invasive Aedes species in Iowa. Here, we describe surveillance efforts from 2016 to 2020 in which we detect stable and persistent populations of Aedes albopictus in three Iowa counties. Based on temporal patterns in abundance and genetic analysis of mitochondrial DNA haplotypes between years, our data support that Ae. albopictus are overwintering and have likely become established in the state. The localization of Ae. albopictus predominantly in areas of urbanization, and noticeable absence in rural areas, suggests that these ecological factors may contribute to overwintering success. Together, these data document the establishment of Ae. albopictus in Iowa and their expansion into the Upper Midwest, where freezing winter temperatures were previously believed to limit their spread. With impending climate change, our study provides evidence for the further expansion of Ae. albopictus into temperate regions of the United States resulting in increased risks for vector-borne disease transmission.


Assuntos
Aedes , Espécies Introduzidas , Aedes/genética , Animais , Temperatura Baixa , Iowa , Dinâmica Populacional
15.
Front Immunol ; 12: 680020, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34484178

RESUMO

Lipid-derived signaling molecules known as eicosanoids have integral roles in mediating immune and inflammatory processes across metazoans. This includes the function of prostaglandins and their cognate G protein-coupled receptors (GPCRs) to employ their immunological actions. In insects, prostaglandins have been implicated in the regulation of both cellular and humoral immune responses, yet in arthropods of medical importance, studies have been limited. Here, we describe a prostaglandin E2 receptor (AgPGE2R) in the mosquito Anopheles gambiae and demonstrate that its expression is most abundant in oenocytoid immune cell populations. Through the administration of prostaglandin E2 (PGE2) and AgPGE2R-silencing, we demonstrate that prostaglandin E2 signaling regulates a subset of prophenoloxidases (PPOs) and antimicrobial peptides (AMPs) that are strongly expressed in populations of oenocytoids. We demonstrate that PGE2 signaling via the AgPGE2R significantly limits both bacterial replication and Plasmodium oocyst survival. Additional experiments establish that PGE2 treatment increases phenoloxidase (PO) activity through the increased expression of PPO1 and PPO3, genes essential to anti-Plasmodium immune responses that promote oocyst killing. We also provide evidence that the mechanisms of PGE2 signaling are concentration-dependent, where high concentrations of PGE2 promote oenocytoid lysis, negating the protective effects of lower concentrations of PGE2 on anti-Plasmodium immunity. Taken together, our results provide new insights into the role of PGE2 signaling on immune cell function and its contributions to mosquito innate immunity that promote pathogen killing.


Assuntos
Anopheles/imunologia , Anopheles/microbiologia , Anopheles/parasitologia , Dinoprostona/metabolismo , Oocistos/imunologia , Plasmodium/imunologia , Transdução de Sinais , Animais , Anopheles/classificação , Hemócitos/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Viabilidade Microbiana , Mosquitos Vetores/imunologia , Mosquitos Vetores/microbiologia , Mosquitos Vetores/parasitologia , Filogenia , Plasmodium/crescimento & desenvolvimento , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Receptores de Prostaglandina E/genética , Receptores de Prostaglandina E/metabolismo
16.
Elife ; 102021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34318744

RESUMO

Mosquito immune cells, known as hemocytes, are integral to cellular and humoral responses that limit pathogen survival and mediate immune priming. However, without reliable cell markers and genetic tools, studies of mosquito immune cells have been limited to morphological observations, leaving several aspects of their biology uncharacterized. Here, we use single-cell RNA sequencing (scRNA-seq) to characterize mosquito immune cells, demonstrating an increased complexity to previously defined prohemocyte, oenocytoid, and granulocyte subtypes. Through functional assays relying on phagocytosis, phagocyte depletion, and RNA-FISH experiments, we define markers to accurately distinguish immune cell subtypes and provide evidence for immune cell maturation and differentiation. In addition, gene-silencing experiments demonstrate the importance of lozenge in defining the mosquito oenocytoid cell fate. Together, our scRNA-seq analysis provides an important foundation for future studies of mosquito immune cell biology and a valuable resource for comparative invertebrate immunology.


Assuntos
Anopheles/imunologia , Diferenciação Celular/imunologia , Hemócitos/imunologia , Mosquitos Vetores/imunologia , Fagócitos/imunologia , Animais , Anopheles/genética , Drosophila , Feminino , Inativação Gênica , Hemócitos/metabolismo , Imunidade Inata , Malária/imunologia , Malária/parasitologia , Mosquitos Vetores/genética , Fagócitos/metabolismo , Análise de Sequência de RNA , Análise de Célula Única
18.
mSphere ; 6(2)2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33789941

RESUMO

Mosquitoes may feed multiple times during their life span in addition to those times needed to acquire and transmit malaria. To determine the impact of subsequent blood feeding on parasite development in Anopheles gambiae, we examined Plasmodium parasite infection with or without an additional noninfected blood meal. We found that an additional blood meal significantly reduced Plasmodium berghei immature oocyst numbers, yet had no effect on the human parasite Plasmodium falciparum These observations were reproduced when mosquitoes were fed an artificial protein meal, suggesting that parasite losses are independent of blood ingestion. We found that feeding with either a blood or protein meal compromises midgut basal lamina integrity as a result of the physical distention of the midgut, enabling the recognition and lysis of immature P. berghei oocysts by mosquito complement. Moreover, we demonstrate that additional feeding promotes P. falciparum oocyst growth, suggesting that human malaria parasites exploit host resources provided with blood feeding to accelerate their growth. This is in contrast to experiments with P. berghei, where the size of surviving oocysts is independent of an additional blood meal. Together, these data demonstrate distinct differences in Plasmodium species in evading immune detection and utilizing host resources at the oocyst stage, representing an additional, yet unexplored component of vectorial capacity that has important implications for the transmission of malaria.IMPORTANCE Mosquitoes must blood feed multiple times to acquire and transmit malaria. However, the impact of an additional mosquito blood meal following malaria parasite infection has not been closely examined. Here, we demonstrate that additional feeding affects mosquito vector competence; namely, additional feeding significantly limits Plasmodium berghei infection, yet has no effect on infection of the human parasite P. falciparum Our experiments support that these killing responses are mediated by the physical distension of the midgut and by temporary damage to the midgut basal lamina that exposes immature P. berghei oocysts to mosquito complement, while human malaria parasites are able to evade these killing mechanisms. In addition, we provide evidence that additional feeding promotes P. falciparum oocyst growth. This is in contrast to P. berghei, where oocyst size is independent of an additional blood meal. This suggests that human malaria parasites are able to exploit host resources provided by an additional feeding to accelerate their growth. In summary, our data highlight distinct differences in malaria parasite species in evading immune recognition and adapting to mosquito blood feeding. These observations have important, yet previously unexplored, implications for the impact of multiple blood meals on the transmission of malaria.


Assuntos
Anopheles/parasitologia , Comportamento Alimentar , Interações Hospedeiro-Parasita , Plasmodium/crescimento & desenvolvimento , Plasmodium/imunologia , Animais , Anopheles/fisiologia , Sangue , Feminino , Evasão da Resposta Imune , Malária/parasitologia , Malária/transmissão , Refeições , Camundongos , Mosquitos Vetores/parasitologia , Oocistos/crescimento & desenvolvimento , Oocistos/imunologia , Plasmodium/classificação , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium berghei/imunologia , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/imunologia
19.
Malar J ; 20(1): 141, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33691700

RESUMO

BACKGROUND: The malaria mosquito Anopheles punctipennis, a widely distributed species in North America, is capable of transmitting human malaria and is actively involved in the transmission of the ungulate malaria parasite Plasmodium odocoilei. However, molecular diagnostic tools based on Internal Transcribed Spacer 2 (ITS2) of ribosomal DNA are lacking for this species. Anopheles punctipennis is a former member of the Anopheles maculipennis complex but its systematic position remains unclear. METHODS: In this study, ITS2 sequences were obtained from 276 An. punctipennis specimens collected in the eastern and midwestern United States and a simple and robust Restriction Fragment Length Polymorphism approach for species identification was developed. The maximum-likelihood phylogenetic tree was constructed based on ITS2 sequences available through this study and from GenBank for 20 species of Anopheles. RESULTS: The analysis demonstrated a consistent ITS2 sequence length and showed no indications of intragenomic variation among the samples based on ITS2, suggesting that An. punctipennis represents a single species in the studied geographic locations. In this study, An. punctipennis was found in urban, rural, and forest settings, suggesting its potential broad role in pathogen transmission. Phylogeny based on ITS2 sequence comparison demonstrated the close relationship of this species with other members of the Maculipennis group. CONCLUSIONS: This study developed molecular tools based on ITS2 sequences for the malaria vector An. punctipennis and clarified the phylogenetic position of the species within the Maculipennis group.


Assuntos
Distribuição Animal , Anopheles/classificação , DNA Espaçador Ribossômico/análise , Mosquitos Vetores/classificação , Polimorfismo de Fragmento de Restrição , Animais , Anopheles/genética , Anopheles/fisiologia , Florida , Iowa , Malária/transmissão , Minnesota , Mosquitos Vetores/genética , Mosquitos Vetores/fisiologia , Virginia
20.
Cell Stem Cell ; 28(5): 894-905.e7, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33631117

RESUMO

H3.3G34R-mutant gliomas are lethal tumors of the cerebral hemispheres with unknown mechanisms of regional specificity and tumorigenicity. We developed a human embryonic stem cell (hESC)-based model of H3.3G34R-mutant glioma that recapitulates the key features of the tumors with cell-type specificity to forebrain interneuronal progenitors but not hindbrain precursors. We show that H3.3G34R, ATRX, and TP53 mutations cooperatively impact alternative RNA splicing events, particularly suppression of intron retention. This leads to increased expression of components of the Notch pathway, notably NOTCH2NL, a human-specific gene family. We also uncover a parallel mechanism of enhanced NOTCH2NL expression via genomic amplification of its locus in some H3.3G34R-mutant tumors. These findings demonstrate a novel mechanism whereby evolutionary pathways that lead to larger brain size in humans are co-opted to drive tumor growth.


Assuntos
Neoplasias Encefálicas , Glioma , Células-Tronco Embrionárias Humanas , Neoplasias Encefálicas/genética , Glioma/genética , Histonas/genética , Humanos , Mutação/genética , Oncogenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...