Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(22)2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36430913

RESUMO

To identify new factors that promote longevity and healthy aging, we studied Drosophila CG13397, an ortholog of the human NAGLU gene, a lysosomal enzyme overexpressed in centenarians. We found that the overexpression of CG13397 (dNAGLU) ubiquitously, or tissue specifically, in the nervous system or fat body could extend fly life span. It also extended the life span of flies overexpressing human Aß42, in a Drosophila Alzheimer's disease (AD) model. To investigate whether dNAGLU could influence health span, we analyzed the effect of its overexpression on AD flies and found that it improved the climbing ability and stress resistance, including desiccation and hunger, suggesting that dNAGLU improved fly health span. We found that the deposition of Aß42 in the mushroom body, which is the fly central nervous system, was reduced, and the lysosomal activity in the intestine was increased in dNAGLU over-expressing flies. When NAGLU was overexpressed in human U251-APP cells, which expresses a mutant form of the Aß-precursor protein (APP), APP-p.M671L, these cells exhibited stronger lysosomal activity and and enhanced expression of lysosomal pathway genes. The concentration of Aß42 in the cell supernatant was reduced, and the growth arrest caused by APP expression was reversed, suggesting that NAGLU could play a wider role beyond its catalytic activity to enhance lysosomal activity. These results also suggest that NAGLU overexpression could be explored to promote healthy aging and to prevent the onset of neurodegenerative diseases, including AD.


Assuntos
Doença de Alzheimer , Longevidade , Idoso de 80 Anos ou mais , Animais , Humanos , Longevidade/genética , Drosophila/genética , Doença de Alzheimer/genética , Exercício Físico , Lisossomos
3.
G3 (Bethesda) ; 7(8): 2439-2460, 2017 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-28667019

RESUMO

The discordance between genome size and the complexity of eukaryotes can partly be attributed to differences in repeat density. The Muller F element (∼5.2 Mb) is the smallest chromosome in Drosophila melanogaster, but it is substantially larger (>18.7 Mb) in D. ananassae To identify the major contributors to the expansion of the F element and to assess their impact, we improved the genome sequence and annotated the genes in a 1.4-Mb region of the D. ananassae F element, and a 1.7-Mb region from the D element for comparison. We find that transposons (particularly LTR and LINE retrotransposons) are major contributors to this expansion (78.6%), while Wolbachia sequences integrated into the D. ananassae genome are minor contributors (0.02%). Both D. melanogaster and D. ananassae F-element genes exhibit distinct characteristics compared to D-element genes (e.g., larger coding spans, larger introns, more coding exons, and lower codon bias), but these differences are exaggerated in D. ananassae Compared to D. melanogaster, the codon bias observed in D. ananassae F-element genes can primarily be attributed to mutational biases instead of selection. The 5' ends of F-element genes in both species are enriched in dimethylation of lysine 4 on histone 3 (H3K4me2), while the coding spans are enriched in H3K9me2. Despite differences in repeat density and gene characteristics, D. ananassae F-element genes show a similar range of expression levels compared to genes in euchromatic domains. This study improves our understanding of how transposons can affect genome size and how genes can function within highly repetitive domains.


Assuntos
Cromossomos/genética , Drosophila/genética , Retroelementos/genética , Animais , Composição de Bases/genética , Sequência de Bases , Códon/genética , Feminino , Perfilação da Expressão Gênica , Genes de Insetos , Histonas/metabolismo , Processamento de Proteína Pós-Traducional/genética , Wolbachia/genética
4.
Sci Rep ; 7: 39861, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-28045091

RESUMO

CTCF is an essential chromatin regulator implicated in important nuclear processes including in nuclear organization and transcription. Herpes Simplex Virus-1 (HSV-1) is a ubiquitous human pathogen, which enters productive infection in human epithelial and many other cell types. CTCF is known to bind several sites in the HSV-1 genome during latency and reactivation, but its function has not been defined. Here, we report that CTCF interacts extensively with the HSV-1 DNA during lytic infection by ChIP-seq, and its knockdown results in the reduction of viral transcription, viral genome copy number and virus yield. CTCF knockdown led to increased H3K9me3 and H3K27me3, and a reduction of RNA pol II occupancy on viral genes. Importantly, ChIP-seq analysis revealed that there is a higher level of CTD Ser2P modified RNA Pol II near CTCF peaks relative to the Ser5P form in the viral genome. Consistent with this, CTCF knockdown reduced the Ser2P but increased Ser5P modified forms of RNA Pol II on viral genes. These results suggest that CTCF promotes HSV-1 lytic transcription by facilitating the elongation of RNA Pol II and preventing silenced chromatin on the viral genome.


Assuntos
Fator de Ligação a CCCTC/metabolismo , Genoma Viral , Herpesvirus Humano 1/genética , RNA Viral/genética , Replicação Viral , Animais , Chlorocebus aethiops , Montagem e Desmontagem da Cromatina , Células HEK293 , Células HeLa , Herpesvirus Humano 1/metabolismo , Herpesvirus Humano 1/patogenicidade , Histonas/genética , Histonas/metabolismo , Humanos , Ligação Proteica , RNA Polimerase II/metabolismo , RNA Viral/metabolismo , Transcrição Gênica , Células Vero
5.
G3 (Bethesda) ; 5(5): 719-40, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25740935

RESUMO

The Muller F element (4.2 Mb, ~80 protein-coding genes) is an unusual autosome of Drosophila melanogaster; it is mostly heterochromatic with a low recombination rate. To investigate how these properties impact the evolution of repeats and genes, we manually improved the sequence and annotated the genes on the D. erecta, D. mojavensis, and D. grimshawi F elements and euchromatic domains from the Muller D element. We find that F elements have greater transposon density (25-50%) than euchromatic reference regions (3-11%). Among the F elements, D. grimshawi has the lowest transposon density (particularly DINE-1: 2% vs. 11-27%). F element genes have larger coding spans, more coding exons, larger introns, and lower codon bias. Comparison of the Effective Number of Codons with the Codon Adaptation Index shows that, in contrast to the other species, codon bias in D. grimshawi F element genes can be attributed primarily to selection instead of mutational biases, suggesting that density and types of transposons affect the degree of local heterochromatin formation. F element genes have lower estimated DNA melting temperatures than D element genes, potentially facilitating transcription through heterochromatin. Most F element genes (~90%) have remained on that element, but the F element has smaller syntenic blocks than genome averages (3.4-3.6 vs. 8.4-8.8 genes per block), indicating greater rates of inversion despite lower rates of recombination. Overall, the F element has maintained characteristics that are distinct from other autosomes in the Drosophila lineage, illuminating the constraints imposed by a heterochromatic milieu.


Assuntos
Proteínas de Drosophila/genética , Drosophila/genética , Evolução Molecular , Genoma , Genômica , Animais , Códon , Biologia Computacional , Elementos de DNA Transponíveis , Drosophila melanogaster/genética , Éxons , Rearranjo Gênico , Heterocromatina , Íntrons , Anotação de Sequência Molecular , Cromossomos Politênicos , Sequências Repetitivas de Ácido Nucleico , Seleção Genética , Especificidade da Espécie
6.
Dev Biol ; 328(2): 518-28, 2009 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-19210964

RESUMO

Insulators or chromatin boundary elements are defined by their ability to block transcriptional activation by an enhancer and to prevent the spread of active or silenced chromatin. Recent studies have increasingly suggested that insulator proteins play a role in large-scale genome organization. To better understand insulator function on the global scale, we conducted a genome-wide analysis of the binding sites for the insulator protein CTCF in Drosophila by Chromatin Immunoprecipitation (ChIP) followed by a tiling-array analysis. The analysis revealed CTCF binding to many known domain boundaries within the Abd-B gene of the BX-C including previously characterized Fab-8 and MCP insulators, and the Fab-6 region. Based on this finding, we characterized the Fab-6 insulator element. In genome-wide analysis, we found that dCTCF-binding sites are often situated between closely positioned gene promoters, consistent with the role of CTCF as an insulator protein. Importantly, CTCF tends to bind gene promoters just upstream of transcription start sites, in contrast to the predicted binding sites of the insulator protein Su(Hw). These findings suggest that CTCF plays more active roles in regulating gene activity and it functions differently from other insulator proteins in organizing the Drosophila genome.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila/genética , Genoma de Inseto , Proteínas Repressoras/genética , Animais , Fator de Ligação a CCCTC , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA/fisiologia , Drosophila/embriologia , Drosophila/fisiologia , Proteínas de Drosophila/fisiologia , Estudo de Associação Genômica Ampla , Regiões Promotoras Genéticas , Proteínas Repressoras/fisiologia
7.
Development ; 135(14): 2383-90, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18550707

RESUMO

Polycomb group (PcG) and trithorax group (trxG) proteins act in an epigenetic fashion to maintain active and repressive states of expression of the Hox and other target genes by altering their chromatin structure. Genetically, mutations in trxG and PcG genes can antagonize each other's function, whereas mutations of genes within each group have synergistic effects. Here, we show in Drosophila that multiple trxG and PcG proteins act through the same or juxtaposed sequences in the maintenance element (ME) of the homeotic gene Ultrabithorax. Surprisingly, trxG or PcG proteins, but not both, associate in vivo in any one cell in a salivary gland with the ME of an activated or repressed Ultrabithorax transgene, respectively. Among several trxG and PcG proteins, only Ash1 and Asx require Trithorax in order to bind to their target genes. Together, our data argue that at the single-cell level, association of repressors and activators correlates with gene silencing and activation, respectively. There is, however, no overall synergism or antagonism between and within the trxG and PcG proteins and, instead, only subsets of trxG proteins act synergistically.


Assuntos
Proteínas Cromossômicas não Histona/genética , Proteínas de Drosophila/genética , Genes de Insetos , Proteínas de Homeodomínio/genética , Fatores de Transcrição/genética , Transcrição Gênica , Alelos , Animais , Animais Geneticamente Modificados , Proteínas Cromossômicas não Histona/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Epigênese Genética , Corantes Fluorescentes/metabolismo , Proteínas de Homeodomínio/metabolismo , Indóis/metabolismo , Complexo Repressor Polycomb 1 , Interferência de RNA , Fatores de Transcrição/metabolismo , Transgenes
8.
EMBO Rep ; 6(2): 165-70, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15678159

RESUMO

Eukaryotic transcriptional regulation often involves regulatory elements separated from the cognate genes by long distances, whereas appropriately positioned insulator or enhancer-blocking elements shield promoters from illegitimate enhancer action. Four proteins have been identified in Drosophila mediating enhancer blocking-Su(Hw), Zw5, BEAF32 and GAGA factor. In vertebrates, the single protein CTCF, with 11 highly conserved zinc fingers, confers enhancer blocking in all known chromatin insulators. Here, we characterize an orthologous CTCF factor in Drosophila with a similar domain structure, binding site specificity and transcriptional repression activity as in vertebrates. In addition, we demonstrate that one of the insulators (Fab-8) in the Drosophila Abdominal-B locus mediates enhancer blocking by dCTCF. Therefore, the enhancer-blocking protein CTCF and, most probably, the mechanism of enhancer blocking mediated by this remarkably versatile factor are conserved from Drosophila to humans.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila/genética , Elementos Facilitadores Genéticos , Proteínas de Homeodomínio/genética , Elementos Isolantes , Proteínas Repressoras/genética , Sequência de Aminoácidos , Animais , Fator de Ligação a CCCTC , Proteínas de Ligação a DNA/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica/fisiologia , Proteínas de Homeodomínio/metabolismo , Humanos , Dados de Sequência Molecular , Proteínas Repressoras/metabolismo
10.
Nat Cell Biol ; 6(2): 162-7, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14730313

RESUMO

Rapid induction of the Drosophila melanogaster heat shock gene hsp70 is achieved through the binding of heat shock factor (HSF) to heat shock elements (HSEs) located upstream of the transcription start site (reviewed in ref. 3). The subsequent recruitment of several other factors, including Spt5, Spt6 and FACT, is believed to facilitate Pol II elongation through nucleosomes downstream of the start site. Here, we report a novel mechanism of heat shock gene regulation that involves modifications of nucleosomes by the TAC1 histone modification complex. After heat stress, TAC1 is recruited to several heat shock gene loci, where its components are required for high levels of gene expression. Recruitment of TAC1 to the 5'-coding region of hsp70 seems to involve the elongating Pol II complex. TAC1 has both histone H3 Lys 4-specific (H3-K4) methyltransferase (HMTase) activity and histone acetyltransferase activity through Trithorax (Trx) and CREB-binding protein (CBP), respectively. Consistently, TAC1 is required for methylation and acetylation of nucleosomal histones in the 5'-coding region of hsp70 after induction, suggesting an unexpected role for TAC1 during transcriptional elongation.


Assuntos
Cromatina/metabolismo , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP70/genética , Fatores de Transcrição , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Embrião não Mamífero/fisiologia , Proteínas de Choque Térmico HSP70/metabolismo , Histonas/metabolismo , Temperatura Alta , Substâncias Macromoleculares , Nucleossomos/metabolismo , Sequências Reguladoras de Ácido Nucleico , Transcrição Gênica
11.
Nature ; 426(6962): 78-83, 2003 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-14603321

RESUMO

Steroid hormones fulfil important functions in animal development. In Drosophila, ecdysone triggers moulting and metamorphosis through its effects on gene expression. Ecdysone works by binding to a nuclear receptor, EcR, which heterodimerizes with the retinoid X receptor homologue Ultraspiracle. Both partners are required for binding to ligand or DNA. Like most DNA-binding transcription factors, nuclear receptors activate or repress gene expression by recruiting co-regulators, some of which function as chromatin-modifying complexes. For example, p160 class coactivators associate with histone acetyltransferases and arginine histone methyltransferases. The Trithorax-related gene of Drosophila encodes the SET domain protein TRR. Here we report that TRR is a histone methyltransferases capable of trimethylating lysine 4 of histone H3 (H3-K4). trr acts upstream of hedgehog (hh) in progression of the morphogenetic furrow, and is required for retinal differentiation. Mutations in trr interact in eye development with EcR, and EcR and TRR can be co-immunoprecipitated on ecdysone treatment. TRR, EcR and trimethylated H3-K4 are detected at the ecdysone-inducible promoters of hh and BR-C in cultured cells, and H3-K4 trimethylation at these promoters is decreased in embryos lacking a functional copy of trr. We propose that TRR functions as a coactivator of EcR by altering the chromatin structure at ecdysone-responsive promoters.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/efeitos dos fármacos , Drosophila/embriologia , Ecdisona/farmacologia , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Animais , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Olho/embriologia , Olho/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Proteínas Hedgehog , Histona-Lisina N-Metiltransferase/genética , Masculino , Metilação/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Ligação Proteica , Receptores de Esteroides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...