Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 109(1-1): 014606, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38366395

RESUMO

Active nematics are an important new paradigm in soft condensed matter systems. They consist of rodlike components with an internal driving force pushing them out of equilibrium. The resulting fluid motion exhibits chaotic advection, in which a small patch of fluid is stretched exponentially in length. Using simulation, this paper shows that this system can exhibit stable periodic motion when confined to a sufficiently small square with periodic boundary conditions. Moreover, employing tools from braid theory, we show that this motion is maximally mixing, in that it optimizes the (dimensionless) "topological entropy"-the exponential stretching rate of a material line advected by the fluid. That is, this periodic motion of the defects, counterintuitively, produces more chaotic mixing than chaotic motion of the defects. We also explore the stability of the periodic state. Importantly, we show how to stabilize this orbit into a larger periodic tiling, a critical necessity for it to be seen in future experiments.

2.
Chaos ; 29(1): 013124, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30709129

RESUMO

Topological entropy measures the number of distinguishable orbits in a dynamical system, thereby quantifying the complexity of chaotic dynamics. One approach to computing topological entropy in a two-dimensional space is to analyze the collective motion of an ensemble of system trajectories taking into account how trajectories "braid" around one another. In this spirit, we introduce the Ensemble-based Topological Entropy Calculation, or E-tec, a method to derive a lower-bound on topological entropy of two-dimensional systems by considering the evolution of a "rubber band" (piece-wise linear curve) wrapped around the data points and evolving with their trajectories. The topological entropy is bounded below by the exponential growth rate of this band. We use tools from computational geometry to track the evolution of the rubber band as data points strike and deform it. Because we maintain information about the configuration of trajectories with respect to one another, updating the band configuration is performed locally, which allows E-tec to be more computationally efficient than some competing methods. In this work, we validate and illustrate many features of E-tec on a chaotic lid-driven cavity flow. In particular, we demonstrate convergence of E-tec's approximation with respect to both the number of trajectories (ensemble size) and the duration of trajectories in time.

3.
Chaos ; 26(3): 033106, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27036184

RESUMO

Topological chaos has emerged as a powerful tool to investigate fluid mixing. While this theory can guarantee a lower bound on the stretching rate of certain material lines, it does not indicate what fraction of the fluid actually participates in this minimally mandated mixing. Indeed, the area in which effective mixing takes place depends on physical parameters such as the Reynolds number. To help clarify this dependency, we numerically simulate the effects of a batch stirring device on a 2D incompressible Newtonian fluid in the laminar regime. In particular, we calculate the finite time Lyapunov exponent (FTLE) field for three different stirring protocols, one topologically complex (pseudo-Anosov) and two simple (finite-order), over a range of viscosities. After extracting appropriate measures indicative of both the amount of mixing and the area of effective mixing from the FTLE field, we see a clearly defined Reynolds number range in which the relative efficacy of the pseudo-Anosov protocol over the finite-order protocols justifies the application of topological chaos. More unexpectedly, we see that while the measures of effective mixing area increase with increasing Reynolds number for the finite-order protocols, they actually exhibit non-monotonic behavior for the pseudo-Anosov protocol.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(5 Pt 2): 056702, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21728688

RESUMO

The venerable two-dimensional (2D) point-vortex model plays an important role as a simplified version of many disparate physical systems, including superfluids, Bose-Einstein condensates, certain plasma configurations, and inviscid turbulence. This system is also a veritable mathematical playground, touching upon many different disciplines from topology to dynamic systems theory. Point-vortex dynamics are described by a relatively simple system of nonlinear ordinary differential equations which can easily be integrated numerically using an appropriate adaptive time stepping method. As the separation between a pair of vortices relative to all other intervortex length scales decreases, however, the computational time required diverges. Accuracy is usually the most discouraging casualty when trying to account for such vortex motion, though the varying energy of this ostensibly Hamiltonian system is a potentially more serious problem. We solve these problems by a series of coordinate transformations: We first transform to action-angle coordinates, which, to lowest order, treat the close pair as a single vortex amongst all others with an internal degree of freedom. We next, and most importantly, apply Lie transform perturbation theory to remove the higher-order correction terms in succession. The overall transformation drastically increases the numerical efficiency and ensures that the total energy remains constant to high accuracy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA