Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Conserv Physiol ; 11(1): coad040, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37701372

RESUMO

Freshwater mussels (order Unionida) play a key role in freshwater systems as ecosystem engineers and indicators of aquatic ecosystem health. The fauna is globally imperilled due to a diversity of suspected factors; however, causes for many population declines and mortality events remain unconfirmed due partly to limited health assessment tools. Mussel-monitoring activities often rely on population-level measurements, such as abundance and age structure, which reflect delayed responses to environmental conditions. Measures of organismal health would enable preemptive detection of declining condition before population-level effects manifest. Metabolomic analysis can identify shifts in biochemical pathways in response to stressors and changing environmental conditions; however, interpretation of the results requires information on inherent variability of metabolite concentrations in mussel populations. We targeted metabolites in the haemolymph of two common mussels, Lampsilis cardium and Lampsilis siliquoidea, from three Indiana streams (USA) using ultra-high-performance liquid chromatography combined with quadrupole time-of-flight mass spectroscopy. The influence of species, stream and sex on metabolite variability was examined with distance-based redundancy analysis. Metabolite variability was most influenced by species, followed by site and sex. Inter- and intraspecies metabolite variability among sexes was less distinct than differences among locations. We further categorized metabolites by occurrence and variability in mussel populations. Metabolites with high occurrence (Categories 1 and 2) included those indicative of energy status (catabolism versus anabolism; arginine, proline, carnitine, nicotinic acid, pantothenic acid), oxidative stress (proline, glutamine, glutamate) and protein metabolism (thymidine, cytidine, inosine). Metabolites with lower occurrence (Category 3) are constituents of assorted metabolic pathways and can be important biomarkers with additional temporal sampling to characterize their variability. These data provide a reference for future temporal (before/after) monitoring and for studies of stressor-metabolite linkages in freshwater mussels.

2.
Nutrients ; 15(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37764658

RESUMO

Choline plays many important roles, including the synthesis of acetylcholine, and may affect muscle responses to exercise. We previously observed correlations between low choline intake and reduced gains in strength and lean mass following a 12-week resistance exercise training (RET) program for older adults. To further explore these findings, we conducted a randomized controlled trial. Three groups of 50-to-69-year-old healthy adults underwent a 12-week RET program (3x/week, 3 sets, 8-12 reps, 70% of maximum strength (1RM)) and submitted >48 diet logs (>4x/week for 12 weeks). Participants' diets were supplemented with 0.7 mg/kg lean/d (low, n = 13), 2.8 mg/kg lean/d (med, n = 11), or 7.5 mg/kg lean/d (high, n = 13) of choline from egg yolk and protein powder. The ANCOVA tests showed that low choline intake, compared with med or high choline intakes, resulted in significantly diminished gains in composite strength (leg press + chest press 1RM; low, 19.4 ± 8.2%; med, 46.8 ± 8.9%; high, 47.4 ± 8.1%; p = 0.034) and thigh-muscle quality (leg press 1RM/thigh lean mass; low, 12.3 ± 9.6%; med/high, 46.4 ± 7.0%; p = 0.010) after controlling for lean mass, protein, betaine, and vitamin B12. These data suggest that low choline intake may negatively affect strength gains with RET in older adults.


Assuntos
Colina , Treinamento Resistido , Humanos , Idoso , Pessoa de Meia-Idade , Acetilcolina , Betaína , Correlação de Dados
3.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37768168

RESUMO

We hypothesized that the provision of rumen-inert fat (RIF) to growing cattle (9 to 13 mo of age) would affect the expression of genes involved in lipid metabolism and thereby affect the size and number of adipocytes of steers slaughtered at 30 mo of age. Thirty steers with an average initial body weight (BW) of 239 ±â€…25 kg were allocated to six pens, balanced for BW and genetic merit for marbling, and assigned to one of two treatment groups: control (only basal diet) or test diet (basal diet with 200 g of RIF per day, on an as-fed basis) for 5 mo. Biopsy samples of longissimus lumborum (LM) muscle were then collected for analysis of fatty acid composition and gene expression. Both groups were then fed the same basal diets during the early and late fattening phases, without RIF, until slaughter (average shrunk BW = 759 kg). Supplementation with RIF increased the longissimus thoracis (LT) intramuscular fatty acid concentration at slaughter (P = 0.087) and numerically increased the quality grade score (P = 0.106). The LM intramuscular relative mRNA expression of genes such as PPARα, ZFP423 and SREBP1, FASN, SCD, FABP4, GPAT1, and DGAT2 were downregulated (P < 0.1) following RIF supplementation. Supplementation of RIF decreased (P < 0.1) diameter and concomitantly increased intramuscular adipocytes per viewing section at slaughter. This likely was caused by promotion of triacylglycerol hydrolysis during the growing phase. Another possible explanation is that the relative mRNA expression of gene ATGL was upregulated by RIF supplementation during the growing (P < 0.1) and the fattening phases (P < 0.05), while the genes associated with fatty acid uptake (FABP4) and esterification (DGAT2) were downregulated during the growing phase and upregulated (P < 0.1) during the fattening phase. This implies that the lipid turnover rate was higher for steers during the growing than fattening phase. This study demonstrated that RIF supplementation during the growing phase induced a carryover effect on the lipogenic transcriptional regulation involved in adipocyte lipid content of intramuscular adipose tissue; increased triacylglycerol hydrolysis during the growing phase subsequently was followed by increased lipid accumulation during the fattening phases.


Rumen inert fat (RIF) is a type of fat supplement that is used in the diets of beef cattle as early as 6 mo of age in calves and continues through the finishing period to improve the dietary energy density which can be used by the animal to deposit more lipid in the muscle tissue. However, for Hanwoo beef cattle, the precise time of RIF supplementation has not yet been determined. This study hypothesized that supplementing RIF at the growing phase (9 to 13 mo of age) would have a positive influence on the marbling characteristics of meat at slaughter. The growth rate and performance of steers were not improved by RIF supplementation, however, an increase in intramuscular fatty acid content was noted that was accompanied by the increased number of intramuscular adipocytes and decreased intramuscular adipocyte diameter. Supportively, upregulation of the genes associated with fatty acid uptake and esterification during the fattening phase of RIF-fed animals was noted. Overall, supplementing RIF at the growing stage could improve the lipid content of the meat which is supported by the increased lipid hydrolysis during the growing phase and followed by increased lipid accumulation during the fattening phases.


Assuntos
Tecido Adiposo , Rúmen , Bovinos , Animais , Rúmen/metabolismo , Tecido Adiposo/metabolismo , Adipócitos/metabolismo , Ácidos Graxos/metabolismo , Dieta/veterinária , Suplementos Nutricionais , Expressão Gênica , RNA Mensageiro/metabolismo , Triglicerídeos/metabolismo , Ração Animal/análise , Composição Corporal
4.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37638631

RESUMO

We hypothesized that media long-chain fatty acids (LCFA) would more greatly depress cyclic adenosine monophosphate (cAMP), glycerol, and free fatty acid (FFA) concentrations in subcutaneous (s.c.) adipose tissue than in intramuscular (i.m.) adipose tissue via G protein-coupled receptor 120 (GPR120). The GPR120 receptor binds to LCFA, which reduces cAMP production, thereby causing a depression in lipolysis. Fresh ex vivo explants of s.c. and i.m. adipose tissue from the fifth to eighth longissimus thoracic rib muscle section of 8, 22-mo-old Angus crossbred steers were transferred immediately to 6-well culture plates containing 3 mL of Krebs-Henseleit buffer/Hepes/5 mM glucose. Samples were preincubated with 0.5 mM theophylline plus 10 µM forskolin for 30 min, after which increasing concentrations of acetate or propionate (volatile fatty acids, VFA) (0, 1, 5, and 10 mM) in the absence or presence of 100 µM oleate (18:1n-9) or 100 µM palmitate (16:0) (LCFA) were added to the incubation media and incubated an additional 30 min. Main effects of adipose tissue depot (i.m. vs. s.c) and VFA (acetate vs. propionate) for adipose tissue concentrations of forskolin-stimulated cAMP were P = 0.747 and P = 0.106, respectively. The addition of LCFA to the media depressed adipose tissue concentrations of cAMP (P = 0.006) (LCFA main effects). The Tissue × VFA × LCFA interaction was not significant for any dependent variable (P ≥ 0.872). Therefore, concentrations of cAMP, glycerol, and FFA were analyzed separately for i.m. and s.c. adipose tissue by split-plot analysis. Concentrations of cAMP, glycerol, or FFA in i.m. and s.c. adipose tissue were not affected by increasing concentrations of VFA (P ≥ 0.497). Media LCFA had no effect on i.m. adipose tissue cAMP (P = 0.570) or glycerol (P = 0.470) but depressed i.m. adipose tissue FFA (P < 0.001). In s.c. adipose tissue, LCFA decreased concentrations of cAMP (P = 0.042) and glycerol (P = 0.038), but increased FFA concentration (P = 0.026). Expression of GPR120 (P = 0.804) and stearoyl-CoA desaturase (P = 0.538) was not different between s.c. adipose tissue and i.m. adipose tissue. The binding of VFA to the GPR43 receptor depresses cAMP production, thereby attenuating lipolysis, but GPR43 mRNA was undetectable in those adipose tissue samples. These results provide evidence for functional GPR120 receptors in s.c. adipose tissue but question the role of GPR43 in the accumulation of adipose tissue lipids in growing steers.


We measured the mRNA abundance and activity of the fatty acid receptor, G protein-coupled receptor 120 (GPR120) in bovine subcutaneous and intramuscular (marbling) adipose tissue. The GPR120 receptor binds to long-chain fatty acids, which reduces cyclic adenosine monophosphate (cAMP) production, thereby decreasing lipolysis. The mRNA amount of GPR120 was similar between subcutaneous and intramuscular adipose tissues. In subcutaneous and intramuscular adipose tissue incubated in vitro, the fatty acids oleic acid and palmitic acid (the most abundant fatty acids in bovine adipose tissue) strongly depressed the production of cAMP and glycerol in subcutaneous adipose tissue and decreased the concentration of free fatty acids in intramuscular adipose tissue (all measured with commercial kits). This indicates that elevations in adipose tissue or plasma fatty acids may promote fat accumulation by decreasing the breakdown of stored lipids via GPR120. The volatile fatty acids acetate and propionate, which bind to G protein-coupled receptor 43 (GPR43) had no effect on cAMP, glycerol, or free fatty acids. This questions the role of GPR43 in the accumulation of adipose tissue lipids in growing steers.


Assuntos
Glicerol , Propionatos , Animais , Propionatos/metabolismo , Colforsina/farmacologia , Glicerol/farmacologia , Tecido Adiposo/metabolismo , Ácidos Graxos/metabolismo , Expressão Gênica , Acetatos/metabolismo
5.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37313716

RESUMO

The process of myogenesis, which involves the growth and differentiation of muscle cells, is a crucial determinant of meat yield and quality in beef cattle. Essential nutrients, such as vitamins D and A, play vital roles in the development and maintenance of various tissues, including muscle. However, limited knowledge exists regarding the specific effects of vitamins A and D in bovine muscle. Therefore, the aim of this study was to investigate the impact of vitamins A and D treatment on myogenic fusion and differentiation in bovine satellite cells (BSC). BSC were isolated from Korean native beef cattle, specifically from four female cows approximately 30 mo old. These individual cows were used as biological replicates (n = 3 or 4), and we examined the effects of varying concentrations of vitamins A (All-trans retinoic acid; 100 nM) and D (1,25-dihydroxy-vitamin D3; 1 nM, 10 nM, and 100 nM), both individually and in combination, on myoblast fusion and myogenic differentiation during the growth phase (48 h) or differentiation phase (6 d). The results were statistically analyzed using GLM procedure of SAS with Tukey's test and t-tests or one-way ANOVA where appropriate. The findings revealed that vitamin A enhanced the myoblast fusion index, while vitamin D treatment decreased the myoblast fusion index during the growth phase. Furthermore, vitamin A treatment during the differentiation phase promoted terminal differentiation by regulating the expression of myogenic regulatory factors (Myf5, MyoD, MyoG, and Myf6) and inducing myotube hypertrophy compared to the control satellite cells (P < 0.01). In contrast, vitamin D treatment during the differentiation phase enhanced myogenic differentiation by increasing the mRNA expression of MyoG and Myf6 (P < 0.01). Moreover, the combined treatment of vitamins A and D during the growth phase increased myoblast fusion and further promoted myogenic differentiation and hypertrophy of myotubes during the differentiation phase (P < 0.01). These results suggest that vitamin A and D supplementation may have differential effects on muscle development in Korean native beef cattle during the feeding process.


The study investigated the effects of vitamins A and D on the growth and differentiation phases of bovine satellite cells and found that both vitamins have a positive impact on muscle development. Vitamin A promoted myoblast fusion during the growth phase, leading to increased myotube formation, while vitamin D suppressed myoblast fusion during this phase. However, during the differentiation phase, both vitamins enhanced terminal differentiation and hypertrophy. Vitamin A promoted the activation of satellite cells, while vitamin D promoted the expression of genes that enhance myogenesis. The combination treatment of vitamins A and D during the growth phase complemented each other to increase myogenic cell fusion, and during differentiation, promoted terminal differentiation and hypertrophy. These findings suggest that supplementing cattle feed with both vitamins A and D has the potential to enhance muscle development, which would be advantageous for the meat industry.


Assuntos
Células Satélites de Músculo Esquelético , Bovinos , Animais , Feminino , Células Satélites de Músculo Esquelético/metabolismo , Colecalciferol/metabolismo , Vitamina A/farmacologia , Vitamina A/metabolismo , Diferenciação Celular/fisiologia , Vitaminas/metabolismo , Desenvolvimento Muscular/genética , Expressão Gênica , República da Coreia
6.
Nutrients ; 15(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36986140

RESUMO

Red meat is stigmatized as an unhealthy protein choice; however, its impacts on vascular function have not been evaluated. We aimed to measure the vascular impact of adding either low-fat (~5% fat) ground beef (LFB) or high-fat (~25% fat) ground beef (HFB) to a habitual diet in free-living men. Twenty-three males (39.9 ± 10.8 years, 177.5 ± 6.7 cm, 97.3 ± 25.0 kg) participated in this double-blind crossover study. Assessment of vascular function and aerobic capacity were measured at entry and in the last week of each intervention and washout period. Participants then completed two 5-week dietary interventions (LFB or HFB; 5 patties/week) in a randomized order with a 4-week washout. Data were analyzed via 2 × 2 repeated-measures ANOVA (p < 0.05). The HFB intervention improved FMD relative to all other time points, while lowering systolic (SBP) and diastolic blood pressure (DBP) relative to entry. Neither the HFB nor the LFB altered pulse wave velocity. The addition of either low- or high-fat ground beef did not negatively alter vascular function. In fact, consuming HFB improved FMD and BP values, which may be mediated by lowering LDL-C concentrations.


Assuntos
Análise de Onda de Pulso , Carne Vermelha , Masculino , Animais , Humanos , Bovinos , Estudos Cross-Over , Pressão Sanguínea , Dieta com Restrição de Gorduras , Carne Vermelha/análise
7.
Med Sci Sports Exerc ; 55(5): 865-872, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36728325

RESUMO

PURPOSE: American-style football (ASF) players are at increased risk for head injuries and cardiovascular disease. n-3 polyunsaturated fatty acids are cardioprotective, and emerging evidence suggests benefits for protection against head injuries. However, fundamental knowledge of n-3 polyunsaturated fatty acid dosing in athletes such as ASF players remains poorly understood. Therefore, this study investigated the dose-response effect of docosahexaenoic acid (DHA) supplementation in red blood cells (RBC) and as the Omega-3 Index (O3I), in collegiate ASF players throughout a competitive season. METHODS: Sixty-nine ASF players were randomly assigned placebo (corn oil), or 2, 4, or 6 g·d -1 of DHA supplement. Blood samples were collected at eight time points (T1-T8) over 27 wk. RBC were extracted and analyzed by gas-liquid chromatography. Compliant players who had samples collected at all time points were analyzed. A repeated-measures ANOVA was conducted to assess the dose-response effect of DHA over time, and between-group differences at individual time points were assessed by one-way ANOVA followed by Tukey post hoc test. RESULTS: A significant dose and time interaction was found, and all supplement groups had significantly greater DHA in RBC compared with placebo from T2-T8 ( P < 0.05). Athletes receiving 6 g·d -1 of DHA had the greatest O3I, relative to other groups, and the O3I reached steady state by 15 wk. The 6 g·d -1 group surpassed >8% on the O3I at approximately twice the rate of the 4 g·d -1 group (8 vs 15 wk). CONCLUSIONS: Our findings provide important fundamental knowledge demonstrating a dose-response incorporation of DHA into RBC membranes up to 6 g·d -1 . Furthermore, 6 g·d -1 of DHA can be used to rapidly achieve a desired O3I (>8%) in athletes in only 8 wk.


Assuntos
Traumatismos Craniocerebrais , Ácidos Graxos Ômega-3 , Futebol Americano , Humanos , Atletas , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/metabolismo , Ácido Eicosapentaenoico/metabolismo
8.
Nutrients ; 15(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36678207

RESUMO

We hypothesized that consumption of high-fat (HF) ground beef (24% fat) would not affect plasma concentrations of high-density lipoprotein cholesterol (HDL-C) or low-density lipoprotein (LDL-C), whereas low-fat (LF) ground beef (5% fat) would decrease HDL-C and LDL-C concentrations. In a randomized 2-period crossover, controlled feeding trial, 25 men (mean age and body mass index, 40 years and 31.2) consumed 115-g HF or LF patties, 5/week for 5 weeks with a 4-week washout. The HF treatment increased % energy from fat (p = 0.006) and saturated fat (p = 0.004) and tended (p = 0.060) to depress % energy from carbohydrates. The HF and LF treatments decreased the plasma concentrations of HDL-C (p = 0.001) and LDL-C (p = 0.011). Both ground beef treatments decreased the abundance of HDL3a and increased the abundance of HDL3 (p ≤ 0.003); the LF treatment also decreased the abundance of HDL2b and HDL2a (p ≤ 0.012). The HF and LF treatments decreased the abundance of LDL3 and LDL4 (p ≤ 0.024) and the HF treatment also decreased LDL5 (p = 0.041). Contrary to our hypothesis, the HF treatment decreased plasma HDL-C and LDL-C concentrations despite increased saturated fat intake, and both treatments decreased the abundance of smaller, denser LDL subfractions.


Assuntos
Dieta com Restrição de Gorduras , Ácidos Graxos , Masculino , Animais , Humanos , Bovinos , LDL-Colesterol , HDL-Colesterol , Índice de Massa Corporal , Triglicerídeos , Gorduras na Dieta
9.
Anim Nutr ; 10: 372-381, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35949197

RESUMO

Our previous studies demonstrated that oral vitamin A supplementation during late-stage pregnancy and the neonatal stage enhances birth weight, growth performance, and mRNA expression related to muscle and preadipocyte development in beef cattle. The alcohol dehydrogenase 1C (ADH1C) c.-64T > C genotype also correlated with vitamin A concentration in beef production. This study aimed to investigate the effects of vitamin A supplementation on the muscle development and vitamin A metabolism in weaned beef calves with different ADH1C genotypes. Twenty male calves (90 d of age; initial BW: 89.03 kg [SD 8.60]) were stratified according to ADH1C genotype and vitamin A treatment (duration: 3 months) and randomly assigned to 4 groups with a 2 × 2 factorial arrangement. Vitamin A treatments included the following: control (10,000 IU/kg of as-fed, a. TT type; b. TC type); treatment (40,000 IU/kg of as-fed, c. TT type; and d. TC type). Parameters including BW, FI, blood, longissimus dorsi muscle, and liver status during the experimental period were analyzed using the generalized linear model (GLM) procedure and Tukey's test by SAS 9.4 program. Serum vitamin A was significantly increased (P < 0.05) in the vitamin A treatment group at 4 and 6 months of age. TT type calves showed higher serum vitamin A concentration (P < 0.05) than the TC type calves. Serum triglyceride and non-esterified fatty acid (NEFA) levels increased (P < 0.05) in the treatment group compared with the control at 6 months of age. However, BW, ADG and FI showed no differences between the groups. In addition, mRNA expression in longissimus dorsi muscle revealed upregulation of paired box 7 (PAX7) (P < 0.05) after the vitamin A treatment period based on biopsy results. Both ADH1C and aldehyde dehydrogenase (ALDH) 1A1 mRNA expression was downregulated (P < 0.01) by vitamin A supplementation. The TC type of ADH1C showed higher mRNA expression than the TT type. However, no effect was observed on adipogenic mRNA expression (preadipocyte factor-1 [PREF-1], peroxisome proliferator-activated receptor gamma [PPARγ], fatty acid binding protein 4 [FABP4]) in all groups. Our findings suggest that weaned calves treated with vitamin A may promote the storage of satellite cells by elevating PAX7 gene expression in the muscle. The TC type calves may show increased capacity for vitamin A metabolism, which can be used in genetically customizing feed management to maximize beef production in the calves.

10.
J Anim Sci ; 100(3)2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35262701

RESUMO

We hypothesized that lubabegron fumarate (LUB) (Experior, Elanco Animal Health, Greenfield, IN) would act as an antagonist to ß-adrenergic receptor (ß-AR) subtypes in primary bovine subcutaneous (s.c.) and intramuscular (i.m.) adipocytes differentiated in culture. This study employed LUB, dobutamine (DOB, a selective ß1-agonist), salbutamol (SAL, a selective ß2-agonist), and propranolol (PRO, a non-selective ß-AR antagonist). Preadipocytes were isolated by standard techniques from bovine longissimus muscle and overlying s.c. adipose tissue and differentiated to adipocytes for 14 d. The adipocyte source x stage of differentiation interaction was significant for ß-adrenergic receptors-1 (ADRB1) (P = 0.001) and ADRB2 (P = 0.01) in that expression of ADRB1 and ADRB2 was greater in s.c. adipocytes than in s.c. preadipocytes; expression of the ADRB1-3 did not change after differentiation of i.m. adipocytes. CCATT/enhancer-binding protein alpha (CEBPA) expression increased upon differentiation in both s.c. and i.m. adipocytes (P = 0.006). The source x stage of differentiation interaction was significant for peroxisome proliferator-activated receptor gamma (PPARG) (P ≤ 0.001) and fatty acid binding protein-4 (FABP4) (P = 0.004). Expression of PPARG increased after differentiation of s.c. preadipocytes to adipocytes, but PPARG expression did not change with differentiation of i.m. preadipocytes to adipocytes. FABP4 expression increased after differentiation of both s.c. and i.m. adipocytes, but FABP4 expression increased to a greater extent in s.c. adipocytes. In s.c. adipocytes, DOB elevated cAMP and glycerol production and protein kinase A (PKA) activity, and SAL increased PKA activity; these effects were abolished by LUB and PRO (P < 0.001). Incubation of i.m. adipocytes with SAL increased cAMP production and PKA activity, which was attenuated by LUB and PRO (P ≤ 0.006). In s.c. adipocytes, SAL, LUB + SAL, and LUB + DOB upregulated hormone sensitive lipase (HSL) (P < 0.001) and perilipin (P = 0.002) gene expression. In i.m. adipocytes, DOB and LUB + DOB increased HSL gene expression (P = 0.001) and LUB + SAL depressed adipose triglyceride lipase expression below control levels (P = 0.001). These results demonstrate that LUB is a ß-AR antagonist at the ß1-AR and ß2-AR subtypes in s.c. adipocytes, and that s.c. and i.m. exhibit different responses to ß-AA and LUB.


We hypothesized that lubabegron fumarate (Experior, Elanco, Greenfield, IN) would act as an antagonist to ß-adrenergic receptor subtypes in primary bovine backfat (subcutaneous) and marbling (intramuscular) adipocytes differentiated in culture. Fat cells were isolated from marbling of longissimus muscle and overlying backfat. In backfat cells, lubabegron fumarate downregulated genes associated with turnover of stored lipid, and lubabegron fumarate reversed the increase in cyclic AMP and protein kinase A caused by the ß1-adrenergic receptor agonist, dobutamine, and the ß2-adrenergic agonist, salbutamol. Increasing cyclic AMP amount and protein kinase A activity would lead to a decrease in backfat lipid stores (reducing backfat thickness), and this would be effectively blocked by lubabegron fumarate. Salbutamol but not dobutamine increased cyclic AMP amount and protein kinase A activity in marbling fat cells, and this effect was blocked by lubabegron fumarate. Taken together, the results of this study indicate that lubabegron fumarate antagonizes the effects of hormones that promote lipid loss from backfat and marbling. However, marbling fat cells are not as responsive as backfat fat cells to ß-adrenergic agonists, so ß-adrenergic agonists such as Zilmax and OptiFlex should have less effect on marbling scores than on backfat thickness.


Assuntos
Adipócitos , Tecido Adiposo , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Antagonistas Adrenérgicos/metabolismo , Animais , Bovinos , Diferenciação Celular , Fumaratos/metabolismo , PPAR gama/genética , PPAR gama/metabolismo
11.
Anim Biosci ; 35(1): 75-86, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34237918

RESUMO

OBJECTIVE: The objective of this experiment was to investigate the effect of dietary glucose oxidase (GOD), catalase (CAT), or both supplementation on reproductive performance, oxidative stress, and apoptosis in sows. METHODS: A total of 104 multiparous sows were randomly assigned to four groups (n = 26) with each group given a basal diet, basal diet plus GOD at 60 U/kg, basal diet plus CAT at 75 U/kg, and basal diet plus GOD at 60 U/kg and CAT at 75 U/kg. Sows were fed the experimental diets throughout gestation and lactation. RESULTS: Dietary GOD supplementation increased average daily feed intake of sows and litter weight at weaning (p<0.05). Dietary CAT supplementation reduced the duration of parturition, stillbirth, and piglet mortality and increased growth performance of weaned piglets (p<0.05). Dietary GOD and CAT supplementation enhanced antioxidant enzyme activities and lessened oxidative stress product levels in plasma of sows and elevated anti-oxidant capacity of 14-day milk and plasma in weaned piglets (p<0.05). Dietary GOD supplementation increased fecal Lactobacillus counts and reduced Escherichia coli counts of sows (p<0.05). Compared with the basal diet, the GOD diet reduced fecal Escherichia coli counts of sows, but the addition of CAT did not reduce Escherichia coli counts in the GOD diet. Dietary GOD and CAT supplementation reduced the apoptosis rate of the liver, endometrium, and ovarian granulosa cells in sows (p<0.05). In the liver, uterus, and ovary of sows, the mRNA expression of caspase-3 and caspase-9 was downregulated by dietary GOD and CAT supplementation (p<0.05). CONCLUSION: Dietary GOD and CAT supplementation could improve the antioxidant capacity of sows and weaned piglets, and alleviate hepatic, ovarian and uterine apoptosis by weakening apoptosis-related gene expression. Glucose oxidase regulated fecal microflora of sows, but supplementation of CAT to GOD could weaken the inhibitory effect of GOD on fecal Escherichia coli.

12.
J Anim Sci ; 99(8)2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34337647

RESUMO

Chinese hamster ovary cell constructs expressing either the ß 1-, ß 2- or ß 3-adrenergic receptor (AR) were used to determine whether a novel ß-AR modulator, lubabegron fumarate (LUB; Experior, Elanco Animal Health) might exert greater potency for a specific ß-AR subtype. EC50 values calculated based on cAMP accumulation in dose response curves indicate that LUB is highly selective for the ß 3-AR subtype, with an EC50 of 6 × 10-9 M, with no detectible agonistic activity at the ß 2-AR. We hypothesized that the accumulation of lipolytic markers would reflect the agonist activity at each of the ß-receptor subtypes of the specific ligand; additionally, there would be differences in receptor subtype expression in subcutaneous (s.c.) and intrmuscular (i.m.) adipose tissues. Total RNA was extracted from adipose tissue samples and relative mRNA levels for ß 1-, ß2-, and ß 3-AR were measured using real-time quantitative polymerase chain reaction. Fresh s.c. and i.m. adipose tissue explants were incubated with isoproterenol hydrochloride (ISO; ß-AR pan-agonist), dobutamine hydrochloride (DOB; specific ß 1-AA), salbutamol sulfate (SAL; specific ß 2-AA), ractopamine hydrochloride (RAC), zilpaterol hydrochloride (ZIL), BRL-37344 (specific ß 3-agonist), or LUB for 30 min following preincubation with theophylline (inhibitor of phosphodiesterase). Relative mRNA amounts for ß 1-, ß 2-, and ß 3-AR were greater (P < 0.05) in s.c. than in i.m. adipose tissue. The most abundant ß-AR mRNA in both adipose tissues was the ß 2-AR (P < 0.05), with the ß 1- and ß 3-AR subtypes being minimally expressed in i.m. adipose tissue. ISO, RH, and ZH stimulated the release of glycerol and nonesterified fatty acid (NEFA) from s.c. adipose tissue, but these ß-AR ligands did not alter concentrations of these lipolytic markers in i.m. adipose tissue. LUB did not affect glycerol or NEFA concentrations in s.c. or i.m. adipose tissue, but attenuated (P < 0.05) the accumulation of cAMP mediated by the ß 1- and ß 2-AR ligands DOB and SAL in s.c. adipose tissue. Collectively, these data indicate that bovine i.m. adipose tissue is less responsive than s.c. adipose tissue to ß-adrenergic ligands, especially those that are agonists at the ß 1- and ß3-receptor subtypes. The minimal mRNA expression of the ß 1- and ß 3 subtypes in i.m. adipose tissue likely limits the response potential to agonists for these ß-AR subtypes.


Assuntos
Agonistas Adrenérgicos beta , Receptores Adrenérgicos beta , Tecido Adiposo , Agonistas Adrenérgicos beta/farmacologia , Animais , Células CHO , Bovinos , Cricetinae , Cricetulus , Fumaratos , Receptores Adrenérgicos beta/genética
13.
J Anim Sci Technol ; 63(2): 380-393, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33987612

RESUMO

This study aimed to determine the blood lipid profiles, fatty acid composition, and lipogenic enzyme activities in rat adipose tissues as affected by the Angus beef fat (ABF) and Hanwoo beef fat (HBF) containing high oleic acid (OA) content. We assigned 60 Sprague Dawley rats with a mean bodyweight of 249 ± 3.04 g to three groups (n = 20 each) to receive diets containing 7% coconut oil (CON), 7% ABF, or 7% HBF. The OA content was highest in the HBF (45.23%) followed by ABF (39.51%) and CON (6.10%). The final body weight of the HBF-fed group was significantly increased, probably due to increased feed intake, indicating the palatability of the diet. The HBF and ABF significantly increased high-density lipoprotein cholesterol (HDL-C), decreased triglyceride (TG) and total cholesterol (TC) levels, and also tended to attenuate glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT) levels in the bloodstream of the rats compared to CON. As compared to CON, lauric, myristic, and palmitic acids were significantly lower, and those of OA and α-linolenic acid (ALA) were significantly higher in the adipose tissues of HBF and ABF-fed groups. The HBF and ABF also reduced lipogenesis as induced by depleted fatty acid synthase (FAS) activity in rat adipose tissues. Nevertheless, between the two fats, HBF showed high feed intake due to its high palatability but reduced lipogenic enzyme activity, specifically that of FAS, and increased HDL-C, decreased TC and TG levels in the bloodstream, reduced saturated fatty acids (SFA), and increased oleic and ALA contents in rat adipose tissues indicating that HBF consumption does not pose significant risks of cardiovascular disease.

14.
J Anim Sci ; 99(6)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33880538

RESUMO

We conducted 3 independent experiments to demonstrate functional G-coupled protein receptor 43 (GPR43) and GPR120 in bovine intramuscular (i.m.) and subcutaneous (s.c.) adipose tissues. We hypothesized that media volatile fatty acids and long-chain fatty acids would affect cAMP-activated protein kinase-alpha (AMPKα) protein expression and cAMP concentrations differently in i.m. and s.c. adipose tissue. Experiment 1: oleic acid (18:1n-9) decreased phosphorylated AMPKα protein (p-AMPKα) and the p-AMPKα/AMPKα protein ratio in i.m. preadipocytes, increased the p-AMPKα/AMPKα protein ratio in bovine satellite cells, and had no effect in s.c. preadipocytes. Experment 2: ex vivo explants from the 5th to 8th longissimus thoracic rib muscle section of Angus crossbred steers were cultured 48 hr in media containing 0.25 µM ciglitizone, 5 mM glucose, and 5 mM acetate, in the absence or the presence of 100 µM oleic acid. Oleic acid increased acetate incorporation into fatty acids and GPR43 gene expression in i.m. adipose tissue (P < 0.05), but oleic acid had no effect on fatty acid synthesis or GPR43 expression in s.c. adipose tissue. Experiment 3: fresh s.c. and i.m. adipose tissue from the 5th to 8th longissimus thoracic rib muscle section of Angus crossbred steers was transferred immediately to 6-well culture plates containing 3 mL of KHB/Hepes/5 mM glucose. Samples were preincubated with 0.5 mM theophylline plus 10 µM forskolin for 30 min, after which increasing concentrations of acetate or propionate (0, 10-3, 10-2.3, and 10-3 M) in the absence or the presence of 100 µM oleic acid or 100 µM palmitic acid (16:0) were added to the incubation media. Acetate had no effect on forskolin-stimulated cAMP production in s.c. adipose tissue but decreased cAMP in i.m. adipose tissue (P < 0.05); this indicates a functional GPR43 receptor in i.m. adipose tissue. The combination of 10-2 M acetate and oleic acid decrease cAMP production in s.c. adipose tissue, consistent with GPR120 receptor activity, but oleic acid and palmitic acid attenuated the depression of cAMP production caused by acetate in i.m. adipose tissue. Palmitic acid depressed cAMP production in s.c. adipose tissue, and increased cAMP production in i.m. adipose tissue (P < 0.05). Propionate had no effect on cAMP production in s.c. or i.m. adipose tissue. These results provide evidence for functional GPR43 receptors in i.m. adipose tissue and GPR120 receptors in s.c. adipose tissue, both of which would suppress lipolysis.


Assuntos
Tecido Adiposo , Ácidos Graxos , Tecido Adiposo/metabolismo , Animais , Bovinos , Ácidos Graxos/metabolismo , Expressão Gênica , Lipogênese , Ácido Oleico/metabolismo , Ácido Oleico/farmacologia
15.
J Anim Sci Biotechnol ; 12(1): 34, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33663602

RESUMO

During growth in cattle, the development of intramuscular adipose tissue and muscle is dependent upon cell hyperplasia (increased number of adipocytes) and hypertrophy (increased size of adipocytes). Based on the results of previous studies, other adipose tissue depots (e.g., perirenal and subcutaneous) develop from the fetal stage primarily as brown adipose tissue. The hyperplastic stage of intramuscular adipose is considered to develop from late pregnancy, but there is no evidence indicating that intramuscular adipose tissue develops initially as brown adipose tissue. Hyperplastic growth of intramuscular adipose continues well into postweaning and is dependent on the timing of the transition to grain-based diets; thereafter, the late-stage development of intramuscular adipose tissue is dominated by hypertrophy. For muscle development, hyperplasia of myoblasts lasts from early (following development of somites in the embryo) to middle pregnancy, after which growth of muscle is the result of hypertrophy of myofibers. Vitamin A is a fat-soluble compound that is required for the normal immunologic function, vision, cellular proliferation, and differentiation. Here we review the roles of vitamin A in intramuscular adipose tissue and muscle development in cattle. Vitamin A regulates both hyperplasia and hypertrophy in in vitro experiments. Vitamin A supplementation at the early stage and restriction at fattening stage generate opposite effects in the beef cattle. Appropriate vitamin A supplementation and restriction strategy increase intramuscular adipose tissue development (i.e., marbling or intramuscular fat) in some in vivo trials. Besides, hyperplasia and hypertrophy of myoblasts/myotubes were affected by vitamin A treatment in in vitro trials. Additionally, some studies reported an interaction between the alcohol dehydrogenase-1C (ADH1C) genotype and vitamin A feed restriction for the development of marbling and/or intramuscular adipose tissue, which was dependent on the timing and level of vitamin A restriction. Therefore, the feed strategy of vitamin A has the visible impact on the marbling and muscle development in the cattle, which will be helpful to promote the quality of the beef.

16.
Adv Exp Med Biol ; 1265: 153-165, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32761575

RESUMO

Severe undernutrition and famine continue to be a worldwide concern, as cases have been increasing in the past 5 years, particularly in developing countries. The occurrence of nutrient restriction (NR) during pregnancy affects fetal growth, leading to small for gestational age (SGA) or intrauterine growth restricted (IUGR) offspring. During adulthood, SGA and IUGR offspring are at a higher risk for the development of metabolic syndrome. Skeletal muscle is particularly sensitive to prenatal NR. This tissue plays an essential role in oxidation and glucose metabolism because roughly 80% of insulin-mediated glucose uptake occurs in muscle, and it represents around 40% of body weight. Alterations in myofiber number, hypertrophy and myofiber type composition, decreased protein synthesis, lower mitochondrial content and activity of oxidative enzymes, and increased accumulation of intramuscular triglycerides are among the described programming effects of maternal NR on skeletal muscle. Together, these features would add to a phenotype that is prone to insulin resistance, type 2 diabetes, obesity, and metabolic syndrome. Insights from diverse animal models (i.e. ovine, swine, and rodent) have provided valuable information regarding the molecular mechanisms behind those altered developmental pathways. Understanding those molecular signatures supports the development of efficient treatments to counteract the effects of maternal NR on skeletal muscle, and its negative implications for postnatal health.


Assuntos
Retardo do Crescimento Fetal/metabolismo , Músculo Esquelético/embriologia , Músculo Esquelético/metabolismo , Nutrientes/deficiência , Nutrientes/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Animais , Diabetes Mellitus Tipo 2 , Feminino , Humanos , Resistência à Insulina , Síndrome Metabólica , Obesidade , Gravidez
17.
Food Sci Nutr ; 8(7): 3617-3625, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32724624

RESUMO

This study was conducted to investigate the effect of dietary oleic acid in olive oil-supplemented diets on the blood lipid profile and fatty acid composition in blood plasma and adipose tissue of rats. A total of 60 Sprague Dawley rats with mean body weight of 249 g ± 3.04 g were equally divided into three diet groups: control (CON) contained 10% coconut oil, olive50 contained 5% coconut oil and 5% olive oil, and olive100 contained 10% olive oil. Oleic acid (OA) level was highest in olive100 followed by the olive50 and control. The final body weight (BW) of the rats was significantly affected by the intake of OA, in which rats fed olive100 had the lowest final BW, which signified that OA could be associated with weight loss. Olive oil intake significantly increased levels of the high-density lipoprotein cholesterol (HDL-C) and exhibited a potential attenuation effect on the glutamic-oxaloacetic transaminase and the glutamic-pyruvic transaminase, and a potential role in the reduction of triglycerides in the bloodstream of the animals. In terms of fatty acid composition, significantly high OA was observed in the blood plasma and adipose tissues of rats fed olive100. Omega-3 polyunsaturated fatty acids (PUFAs), such as linolenic (C18:3 n-3), eicosapentaenoic (C20:5 n-3), and docosahexaenoic (C22:6 n-3), and n-6 PUFA arachidonic (C20:4 n-6) were also significantly increased in the blood plasma of rats fed olive100. These findings suggest that the intake of dietary high OA may enhance the omega-3 fatty acid levels in the blood plasma of rats and may have a positive effect in reducing risks to cardiovascular disease, as evidenced by weight loss, increased HDL-C levels, and decreased TG levels in the blood plasma of experimental animals.

18.
Meat Sci ; 170: 108238, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32682176

RESUMO

We hypothesized that zilpaterol hydrochloride (ZH) depresses marbling scores in beef cattle by dilution of the intramuscular (i.m.) adipose tissue in the longissimus thoracis (LT) by increased muscle cross-sectional area. Crossbred steers were treated with ractopamine hydrochloride (RH; 28 d) or ZH (20 d) or no ß-adrenergic agonist (CON). ZH increased LT cross-sectional area (P < .001) and depressed rib fat depth (P < .001), USDA marbling score (P < .05), percent LT lipid (P < .02), total lipid in a 2.54 cm-thick LM steak (P < .05) and most LT lipid fatty acids (P ≤ .05),but had no effect on mean i.m. adipocyte volume (P = .15). ZH increased the relative volume proportion of smaller i.m. adipocytes (250 to 500 pL) and decreased the proportion of larger i.m. adipocytes (2000 and 3000 pL) (P < .05). We conclude that ZH reduces marbling score both by dilution of the marbling and a depression of i.m. adipocyte relative volumes.


Assuntos
Adipócitos , Agonistas Adrenérgicos beta/farmacologia , Carne Vermelha/análise , Compostos de Trimetilsilil/farmacologia , Animais , Composição Corporal/efeitos dos fármacos , Bovinos/crescimento & desenvolvimento , Músculo Esquelético/efeitos dos fármacos , Fenetilaminas/farmacologia
19.
J Anim Sci Biotechnol ; 11: 27, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32190298

RESUMO

BACKGROUND: We hypothesized that supplementation of nursery and grower pig diets with coconut oil in the absence of antibiotics would yield maintenance of glucose homeostasis, growth performance, and immune function similar to what is achieved with nursery and grower pig diets containing antibiotics. Pigs received the same base treatment diets from d24 (weaning) to d71 of age and had blood and fecal samples collected on d24, d31, d45 and d71 for measurement of whole blood glucose, serum insulin, cortisol and cytokines, and fecal microbiome. Pigs had weekly weights and daily feed consumption measured throughout the study. Animals were euthanized at d71 and subcutaneous fat and ileal contents were collected for assessment for fatty acids and microbiome, respectively. Diet treatments consisted of 2% soybean oil plus antibiotics (ABX; n = 22), 2% soybean oil without antibiotics (NABX; n = 22), and 2% coconut oil without antibiotics (COC; n = 22). Statistical analysis examined the effect of diet within each timepoint using a repeated measures ANOVA. RESULTS: Pigs fed COC diet had decreased serum insulin levels, maintained feed intake, feed conversion and weight gain, and, based on serum cytokines and fecal microbiome, were immunologically similar to ABX-fed pigs. However, NABX-fed pigs performed similarly to the ABX-fed pigs in all parameters except for serum cytokines. Additionally, there was no difference in the incidence of diarrhea between any of the diet treatments. CONCLUSIONS: This study demonstrates that dietary antibiotics are not necessary to maintain growth performance in nursery and grower pigs. However, dietary antibiotics appear to modulate circulating cytokine levels. Dietary coconut oil is neither harmful nor helpful to growth performance or immune function in nursery and grower pigs but does modulate serum insulin levels. Therefore, while coconut oil fed at 2% by weight is a suitable substitute for dietary antibiotics, this study suggests that no substitute for dietary antibiotics is needed at all.

20.
Meat Sci ; 163: 108076, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32066000

RESUMO

This review summarizes the effects of high-oleic acid oil and high-oleic acid ground beef interventions on risk factors for cardiovascular disease (CVD) in human trials, and also summarizes studies designed to increase the amount of oleic acid (18:1n-9) in beef. In three human trials, high-oleic acid oils and high-oleic acid ground beef increased plasma high-density lipoprotein cholesterol over baseline values or over high-carbohydrate diets. Neither low-oleic acid nor high-oleic acid ground beef increased risk factors for CVD, confirming earlier studies that used high-oleic acid oils. High-oleic acid beef can be obtained from cattle fed a corn-based finishing diet to USDA Grade of USDA Choice or greater; from beef from cattle with Japanese genetics; and from the brisket. Beef from grass-fed cattle contains more n-3 fatty acids than beef from conventionally-fed cattle, but also contains greater amounts of saturated and trans-fatty acids.


Assuntos
Dieta/efeitos adversos , Ácido Oleico/análise , Carne Vermelha/efeitos adversos , Ração Animal/análise , Animais , Doenças Cardiovasculares , Bovinos/genética , HDL-Colesterol/sangue , Dieta/veterinária , Gorduras na Dieta , Ácidos Graxos , Humanos , Carne Vermelha/análise , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...