Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life (Basel) ; 11(10)2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34685431

RESUMO

The establishment of steady-state continuous crop production during long-term deep space missions is critical for providing consistent nutritional and psychological benefits for the crew, potentially improving their health and performance. Three technology demonstrations were completed achieving simultaneous multi-species plant growth and the concurrent use of two Veggie units on the International Space Station (ISS). Microbiological characterization using molecular and culture-based methods was performed on leaves and roots from two harvests of three leafy greens, red romaine lettuce (Lactuca sativa cv. 'Outredgeous'); mizuna mustard, (Brassica rapa var japonica); and green leaf lettuce, (Lactuca sativa cv. Waldmann's) and associated rooting pillow components and Veggie chamber surfaces. Culture based enumeration and pathogen screening indicated the leafy greens were safe for consumption. Surface samples of the Veggie facility and plant pillows revealed low counts of bacteria and fungi and are commonly isolated on ISS. Community analysis was completed with 16S rRNA amplicon sequencing. Comparisons between pillow components, and plant tissue types from VEG-03D, E, and F revealed higher diversity in roots and rooting substrate than the leaves and wick. This work provides valuable information for food production-related research on the ISS and the impact of the plant microbiome on this unique closed environment.

2.
Astrobiology ; 21(9): 1029-1048, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33926205

RESUMO

A plant production system called Veggie was launched to the International Space Station (ISS) in 2014. In late 2015, during the growth of Zinnia hybrida cv. 'Profusion' in the Veggie hardware, plants developed chlorosis, leaf curling, fungal growth that damaged leaves and stems, and eventually necrosis. The development of symptoms was correlated to reduced air flow leading to a significant buildup of water enveloping the leaves and stems in microgravity. Symptomatic tissues were returned to Earth on 18 May 2016 and were immediately processed to determine the primary causal agent of the disease. The presumptive pathogen was identified as Fusarium oxysporum by morphological features of microconidia and conidiophores on symptomatic tissues; that is, by epifluorescent microscopy (EFM), scanning electron microscopy (SEM), metabolic microarrays, and ITS sequencing. Both EFM and SEM imaging of infected tissues showed that germinating conidia were capable of stomatal penetration and thus acted as the primary method for infecting host tissues. A series of ground-based pathogenicity assays were conducted with healthy Z. hybrida plants that were exposed to reduced-airflow and high-water stress (i.e., encased in sealed bags) or were kept in an unstressed configuration. Koch's postulates were successfully completed with Z. hybrida plants in the lab, but symptoms only matched ISS-flown symptomatic tissues when the plants were stressed with high-water exposure. Unstressed plants grown under similar lab conditions failed to develop the symptoms observed with plants on board the ISS. The overall results of the pathogenicity tests imply that F. oxysporum acted as an opportunistic pathogen on severely high-water stressed plants. The source of the opportunistic pathogen is not known, but virulent strains of F. oxysporum were not recovered from unused materials in the Veggie plant pillow growth units assayed after the flight.


Assuntos
Asteraceae/microbiologia , Fusarium , Doenças das Plantas/microbiologia , Astronave , Fungos , Folhas de Planta
3.
Front Plant Sci ; 11: 199, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32210992

RESUMO

The ability to grow safe, fresh food to supplement packaged foods of astronauts in space has been an important goal for NASA. Food crops grown in space experience different environmental conditions than plants grown on Earth (e.g., reduced gravity, elevated radiation levels). To study the effects of space conditions, red romaine lettuce, Lactuca sativa cv 'Outredgeous,' plants were grown in Veggie plant growth chambers on the International Space Station (ISS) and compared with ground-grown plants. Multiple plantings were grown on ISS and harvested using either a single, final harvest, or sequential harvests in which several mature leaves were removed from the plants at weekly intervals. Ground controls were grown simultaneously with a 24-72 h delay using ISS environmental data. Food safety of the plants was determined by heterotrophic plate counts for bacteria and fungi, as well as isolate identification using samples taken from the leaves and roots. Molecular characterization was conducted using Next Generation Sequencing (NGS) to provide taxonomic composition and phylogenetic structure of the community. Leaves were also analyzed for elemental composition, as well as levels of phenolics, anthocyanins, and Oxygen Radical Absorbance Capacity (ORAC). Comparison of flight and ground tissues showed some differences in total counts for bacteria and yeast/molds (2.14 - 4.86 log10 CFU/g), while screening for select human pathogens yielded negative results. Bacterial and fungal isolate identification and community characterization indicated variation in the diversity of genera between leaf and root tissue with diversity being higher in root tissue, and included differences in the dominant genera. The only difference between ground and flight experiments was seen in the third experiment, VEG-03A, with significant differences in the genera from leaf tissue. Flight and ground tissue showed differences in Fe, K, Na, P, S, and Zn content and total phenolic levels, but no differences in anthocyanin and ORAC levels. This study indicated that leafy vegetable crops can produce safe, edible, fresh food to supplement to the astronauts' diet, and provide baseline data for continual operation of the Veggie plant growth units on ISS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...