Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rep Pract Oncol Radiother ; 27(2): 241-249, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36299384

RESUMO

Background: To properly configure a treatment planning system, a measurement data set is needed, which consists of the values required for its configuration. The aim is to obtain a dosimetric model of the beam that is as compatible as possible with the measured values. The set of required data can be supplemented with optional values. The aim of the study was to assess the influence of optional measurement data on the compliance of the calculations with the measurements. Materials and methods: Dosimetric measurements, model configuration and dose distribution calculations were performed for the photon radiation beams generated by the VMS TrueBeam® linear accelerator. Beams were configured on an Eclipse™ v. 15.6 system using the Acuros v. 15.6 algorithm. The measured and calculated data were entered into the Alfard™ software for comparison with the calculated dose distributions. In the last stage, the absolute dose values at the designated points were also compared. The obtained data were statistically analysed with Statistica™ v. 13.3. Results: The work showed that the differences in the shape of the beam profile, depth dose and the dose value in points were not related to the use of optional data. Differences in dose distributions are within the tolerance. It cannot be determined under which conditions the use of optional data has a more favourable effect on the reflection of the actual dose values. Conclusions: The use of optional data in modelling photon radiation beams does not significantly improve the compliance of the calculated and measured dose values.

2.
Rep Pract Oncol Radiother ; 19(6): 420-7, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25337416

RESUMO

AIM: To present practical examples of our new algorithm for reconstruction of 3D dose distribution, based on the actual MLC leaf movement. BACKGROUND: DynaLog and RTplan files were used by DDcon software to prepare a new RTplan file for dose distribution reconstruction. MATERIALS AND METHODS: FOUR DIFFERENT CLINICALLY RELEVANT SCENARIOS WERE USED TO ASSESS THE FEASIBILITY OF THE PROPOSED NEW APPROACH: (1) Reconstruction of whole treatment sessions for prostate cancer; (2) Reconstruction of IMRT verification treatment plan; (3) Dose reconstruction in breast cancer; (4) Reconstruction of interrupted arc and complementary plan for an interrupted VMAT treatment session of prostate cancer. The applied reconstruction method was validated by comparing reconstructed and measured fluence maps. For all statistical analysis, the U Mann-Whitney test was used. RESULTS: In the first two and the fourth cases, there were no statistically significant differences between the planned and reconstructed dose distribution (p = 0.910, p = 0.975, p = 0.893, respectively). In the third case the differences were statistically significant (p = 0.015). Treatment plan had to be reconstructed. CONCLUSION: Developed dose distribution reconstruction algorithm presents a very useful QA tool. It provides means for 3D dose distribution verification in patient volume and allows to evaluate the influence of actual MLC leaf motion on the dose distribution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...