Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Cell Genom ; 2(4): None, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35591976

RESUMO

Identifying cellular functions dysregulated by disease-associated variants could implicate novel pathways for drug targeting or modulation in cell therapies. However, follow-up studies can be challenging if disease-relevant cell types are difficult to sample. Variants associated with immune diseases point toward the role of CD4+ regulatory T cells (Treg cells). We mapped genetic regulation (quantitative trait loci [QTL]) of gene expression and chromatin activity in Treg cells, and we identified 133 colocalizing loci with immune disease variants. Colocalizations of immune disease genome-wide association study (GWAS) variants with expression QTLs (eQTLs) controlling the expression of CD28 and STAT5A, involved in Treg cell activation and interleukin-2 (IL-2) signaling, support the contribution of Treg cells to the pathobiology of immune diseases. Finally, we identified seven known drug targets suitable for drug repurposing and suggested 63 targets with drug tractability evidence among the GWAS signals that colocalized with Treg cell QTLs. Our study is the first in-depth characterization of immune disease variant effects on Treg cell gene expression modulation and dysregulation of Treg cell function.

2.
Nat Genet ; 54(6): 817-826, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35618845

RESUMO

During activation, T cells undergo extensive gene expression changes that shape the properties of cells to exert their effector function. Understanding the regulation of this process could help explain how genetic variants predispose to immune diseases. Here, we mapped genetic effects on gene expression (expression quantitative trait loci (eQTLs)) using single-cell transcriptomics. We profiled 655,349 CD4+ T cells, capturing transcriptional states of unstimulated cells and three time points of cell activation in 119 healthy individuals. This identified 38 cell clusters, including transient clusters that were only present at individual time points of activation. We found 6,407 genes whose expression was correlated with genetic variation, of which 2,265 (35%) were dynamically regulated during activation. Furthermore, 127 genes were regulated by variants associated with immune-mediated diseases, with significant enrichment for dynamic effects. Our results emphasize the importance of studying context-specific gene expression regulation and provide insights into the mechanisms underlying genetic susceptibility to immune-mediated diseases.


Assuntos
Doenças do Sistema Imunitário , Locos de Características Quantitativas , Linfócitos T CD4-Positivos , Regulação da Expressão Gênica/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Doenças do Sistema Imunitário/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética , Transcriptoma
3.
Nat Commun ; 11(1): 1801, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286271

RESUMO

Naïve CD4+ T cells coordinate the immune response by acquiring an effector phenotype in response to cytokines. However, the cytokine responses in memory T cells remain largely understudied. Here we use quantitative proteomics, bulk RNA-seq, and single-cell RNA-seq of over 40,000 human naïve and memory CD4+ T cells to show that responses to cytokines differ substantially between these cell types. Memory T cells are unable to differentiate into the Th2 phenotype, and acquire a Th17-like phenotype in response to iTreg polarization. Single-cell analyses show that T cells constitute a transcriptional continuum that progresses from naïve to central and effector memory T cells, forming an effectorness gradient accompanied by an increase in the expression of chemokines and cytokines. Finally, we show that T cell activation and cytokine responses are influenced by the effectorness gradient. Our results illustrate the heterogeneity of T cell responses, furthering our understanding of inflammation.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Citocinas/farmacologia , Análise de Célula Única , Transcriptoma/genética , Antígenos CD28/metabolismo , Linfócitos T CD4-Positivos/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Masculino , Pessoa de Meia-Idade , Análise de Componente Principal , Proteoma/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transcriptoma/efeitos dos fármacos
4.
Nat Genet ; 51(10): 1486-1493, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31548716

RESUMO

Immune-disease-associated variants are enriched in active chromatin regions of T cells and macrophages. However, whether these variants function in specific cell states is unknown. Here we stimulated T cells and macrophages in the presence of 13 cytokines and profiled active and open chromatin regions. T cell activation induced major chromatin remodeling, while the presence of cytokines fine-tuned the magnitude of changes. We developed a statistical method that accounts for subtle changes in the chromatin landscape to identify SNP enrichment across cell states. Our results point towards the role of immune-disease-associated variants in early rather than late activation of memory CD4+ T cells, with modest differences across cytokines. Furthermore, variants associated with inflammatory bowel disease are enriched in type 1 T helper (TH1) cells, whereas variants associated with Alzheimer's disease are enriched in different macrophage cell states. Our results represent an in-depth analysis of immune-disease-associated variants across a comprehensive panel of activation states of T cells and macrophages.


Assuntos
Cromatina/metabolismo , Citocinas/farmacologia , Estudo de Associação Genômica Ampla , Doenças do Sistema Imunitário/imunologia , Macrófagos/imunologia , Células Th1/imunologia , Cromatina/genética , Humanos , Doenças do Sistema Imunitário/tratamento farmacológico , Doenças do Sistema Imunitário/genética , Ativação Linfocitária , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Células Th1/efeitos dos fármacos , Células Th1/metabolismo
5.
JCI Insight ; 2(16)2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28814669

RESUMO

The maintenance of peripheral naive T lymphocytes in humans is dependent on their homeostatic division, not continuing emigration from the thymus, which undergoes involution with age. However, postthymic maintenance of naive T cells is still poorly understood. Previously we reported that recent thymic emigrants (RTEs) are contained in CD31+CD25- naive T cells as defined by their levels of signal joint T cell receptor rearrangement excision circles (sjTRECs). Here, by differential gene expression analysis followed by protein expression and functional studies, we define that the naive T cells having divided the least since thymic emigration express complement receptors (CR1 and CR2) known to bind complement C3b- and C3d-decorated microbial products and, following activation, produce IL-8 (CXCL8), a major chemoattractant for neutrophils in bacterial defense. We also observed an IL-8-producing memory T cell subpopulation coexpressing CR1 and CR2 and with a gene expression signature resembling that of RTEs. The functions of CR1 and CR2 on T cells remain to be determined, but we note that CR2 is the receptor for Epstein-Barr virus, which is a cause of T cell lymphomas and a candidate environmental factor in autoimmune disease.

6.
Wellcome Open Res ; 2: 28, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28815218

RESUMO

BACKGROUND: The infection of a participant with norovirus during the adaptive study of interleukin-2 dose on regulatory T cells in type 1 diabetes (DILT1D) allowed a detailed insight into the cellular and cytokine immune responses to this prevalent gastrointestinal pathogen. METHODS: Serial blood, serum and peripheral blood mononuclear cell (PBMC) samples were collected pre-, and post-development of the infection. To differentiate between the immune response to norovirus and to control for the administration of a single dose of aldesleukin (recombinant interleukin-2, rIL-2) alone, samples from five non-infected participants administered similar doses were analysed in parallel. RESULTS: Norovirus infection was self-limited and resolved within 24 hours, with the subsequent development of anti-norovirus antibodies. Serum pro- and anti-inflammatory cytokine levels, including IL-10, peaked during the symptomatic period of infection, coincident with increased frequencies of monocytes and neutrophils. At the same time, the frequency of regulatory CD4 + T cell (Treg), effector T cell (Teff) CD4 + and CD8 + subsets were dynamically reduced, rebounding to baseline levels or above at the next sampling point 24 hours later.  NK cells and NKT cells transiently increased CD69 expression and classical monocytes expressed increased levels of CD40, HLA-DR and SIGLEC-1, biomarkers of an interferon response. We also observed activation and mobilisation of Teffs, where increased frequencies of CD69 + and Ki-67 + effector memory Teffs were followed by the emergence of memory CD8 + Teff expressing the mucosal tissue homing markers CD103 and ß7 integrin. Treg responses were coincident with the innate cell, Teff and cytokine response. Key Treg molecules FOXP3, CTLA-4, and CD25 were upregulated following infection, alongside an increase in frequency of Tregs with the capacity to home to tissues. CONCLUSIONS: The results illustrate the innate, adaptive and counter-regulatory immune responses to norovirus infection. Low-dose IL-2 administration induces many of the Treg responses observed during infection.

7.
J Autoimmun ; 84: 75-86, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28747257

RESUMO

Identification of alterations in the cellular composition of the human immune system is key to understanding the autoimmune process. Recently, a subset of FOXP3+ cells with low CD25 expression was found to be increased in peripheral blood from systemic lupus erythematosus (SLE) patients, although its functional significance remains controversial. Here we find in comparisons with healthy donors that the frequency of FOXP3+ cells within CD127lowCD25low CD4+ T cells (here defined as CD25lowFOXP3+ T cells) is increased in patients affected by autoimmune disease of varying severity, from combined immunodeficiency with active autoimmunity, SLE to type 1 diabetes. We show that CD25lowFOXP3+ T cells share phenotypic features resembling conventional CD127lowCD25highFOXP3+ Tregs, including demethylation of the Treg-specific epigenetic control region in FOXP3, HELIOS expression, and lack of IL-2 production. As compared to conventional Tregs, more CD25lowFOXP3+HELIOS+ T cells are in cell cycle (33.0% vs 20.7% Ki-67+; P = 1.3 × 10-9) and express the late-stage inhibitory receptor PD-1 (67.2% vs 35.5%; P = 4.0 × 10-18), while having reduced expression of the early-stage inhibitory receptor CTLA-4, as well as other Treg markers, such as FOXP3 and CD15s. The number of CD25lowFOXP3+ T cells is correlated (P = 3.1 × 10-7) with the proportion of CD25highFOXP3+ T cells in cell cycle (Ki-67+). These findings suggest that CD25lowFOXP3+ T cells represent a subset of Tregs that are derived from CD25highFOXP3+ T cells, and are a peripheral marker of recent Treg expansion in response to an autoimmune reaction in tissues.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Fator de Transcrição Ikaros/metabolismo , Lúpus Eritematoso Sistêmico/imunologia , Subpopulações de Linfócitos T/fisiologia , Linfócitos T Reguladores/fisiologia , Adolescente , Adulto , Idoso , Autoimunidade , Células Cultivadas , Criança , Desmetilação , Repressão Epigenética , Feminino , Fatores de Transcrição Forkhead/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Fator de Transcrição Ikaros/genética , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Masculino , Pessoa de Meia-Idade , Adulto Jovem
8.
PLoS Med ; 13(10): e1002139, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27727279

RESUMO

BACKGROUND: Interleukin-2 (IL-2) has an essential role in the expansion and function of CD4+ regulatory T cells (Tregs). Tregs reduce tissue damage by limiting the immune response following infection and regulate autoreactive CD4+ effector T cells (Teffs) to prevent autoimmune diseases, such as type 1 diabetes (T1D). Genetic susceptibility to T1D causes alterations in the IL-2 pathway, a finding that supports Tregs as a cellular therapeutic target. Aldesleukin (Proleukin; recombinant human IL-2), which is administered at high doses to activate the immune system in cancer immunotherapy, is now being repositioned to treat inflammatory and autoimmune disorders at lower doses by targeting Tregs. METHODS AND FINDINGS: To define the aldesleukin dose response for Tregs and to find doses that increase Tregs physiologically for treatment of T1D, a statistical and systematic approach was taken by analysing the pharmacokinetics and pharmacodynamics of single doses of subcutaneous aldesleukin in the Adaptive Study of IL-2 Dose on Regulatory T Cells in Type 1 Diabetes (DILT1D), a single centre, non-randomised, open label, adaptive dose-finding trial with 40 adult participants with recently diagnosed T1D. The primary endpoint was the maximum percentage increase in Tregs (defined as CD3+CD4+CD25highCD127low) from the baseline frequency in each participant measured over the 7 d following treatment. There was an initial learning phase with five pairs of participants, each pair receiving one of five pre-assigned single doses from 0.04 × 106 to 1.5 × 106 IU/m2, in order to model the dose-response curve. Results from each participant were then incorporated into interim statistical modelling to target the two doses most likely to induce 10% and 20% increases in Treg frequencies. Primary analysis of the evaluable population (n = 39) found that the optimal doses of aldesleukin to induce 10% and 20% increases in Tregs were 0.101 × 106 IU/m2 (standard error [SE] = 0.078, 95% CI = -0.052, 0.254) and 0.497 × 106 IU/m2 (SE = 0.092, 95% CI = 0.316, 0.678), respectively. On analysis of secondary outcomes, using a highly sensitive IL-2 assay, the observed plasma concentrations of the drug at 90 min exceeded the hypothetical Treg-specific therapeutic window determined in vitro (0.015-0.24 IU/ml), even at the lowest doses (0.040 × 106 and 0.045 × 106 IU/m2) administered. A rapid decrease in Treg frequency in the circulation was observed at 90 min and at day 1, which was dose dependent (mean decrease 11.6%, SE = 2.3%, range 10.0%-48.2%, n = 37), rebounding at day 2 and increasing to frequencies above baseline over 7 d. Teffs, natural killer cells, and eosinophils also responded, with their frequencies rapidly and dose-dependently decreased in the blood, then returning to, or exceeding, pretreatment levels. Furthermore, there was a dose-dependent down modulation of one of the two signalling subunits of the IL-2 receptor, the ß chain (CD122) (mean decrease = 58.0%, SE = 2.8%, range 9.8%-85.5%, n = 33), on Tregs and a reduction in their sensitivity to aldesleukin at 90 min and day 1 and 2 post-treatment. Due to blood volume requirements as well as ethical and practical considerations, the study was limited to adults and to analysis of peripheral blood only. CONCLUSIONS: The DILT1D trial results, most notably the early altered trafficking and desensitisation of Tregs induced by a single ultra-low dose of aldesleukin that resolves within 2-3 d, inform the design of the next trial to determine a repeat dosing regimen aimed at establishing a steady-state Treg frequency increase of 20%-50%, with the eventual goal of preventing T1D. TRIAL REGISTRATION: ISRCTN Registry ISRCTN27852285; ClinicalTrials.gov NCT01827735.


Assuntos
Diabetes Mellitus Tipo 1/prevenção & controle , Interleucina-2/análogos & derivados , Linfócitos T Reguladores/efeitos dos fármacos , Adolescente , Adulto , Biomarcadores , Quimiocinas/biossíntese , Relação Dose-Resposta a Droga , Eosinófilos/efeitos dos fármacos , Feminino , Humanos , Imunofenotipagem , Mediadores da Inflamação/metabolismo , Interleucina-2/efeitos adversos , Interleucina-2/farmacologia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Proteínas Recombinantes/efeitos adversos , Proteínas Recombinantes/farmacologia , Adulto Jovem
10.
Diabetes ; 64(11): 3891-902, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26224887

RESUMO

Defective immune homeostasis in the balance between FOXP3+ regulatory T cells (Tregs) and effector T cells is a likely contributing factor in the loss of self-tolerance observed in type 1 diabetes (T1D). Given the importance of interleukin-2 (IL-2) signaling in the generation and function of Tregs, observations that polymorphisms in genes in the IL-2 pathway associate with T1D and that some individuals with T1D exhibit reduced IL-2 signaling indicate that impairment of this pathway may play a role in Treg dysfunction and the pathogenesis of T1D. Here, we have examined IL-2 sensitivity in CD4+ T-cell subsets in 70 individuals with long-standing T1D, allowing us to investigate the effect of low IL-2 sensitivity on Treg frequency and function. IL-2 responsiveness, measured by STAT5a phosphorylation, was a very stable phenotype within individuals but exhibited considerable interindividual variation and was influenced by T1D-associated PTPN2 gene polymorphisms. Tregs from individuals with lower IL-2 signaling were reduced in frequency, were less able to maintain expression of FOXP3 under limiting concentrations of IL-2, and displayed reduced suppressor function. These results suggest that reduced IL-2 signaling may be used to identify patients with the highest Treg dysfunction and who may benefit most from IL-2 immunotherapy.


Assuntos
Diabetes Mellitus Tipo 1/genética , Subunidade alfa de Receptor de Interleucina-2/genética , Linfócitos T Reguladores/fisiologia , Diabetes Mellitus Tipo 1/imunologia , Genótipo , Humanos , Interleucina-2/farmacologia , Polimorfismo de Nucleotídeo Único , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Transdução de Sinais/genética , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia
11.
PLoS Genet ; 11(6): e1005272, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26106896

RESUMO

Identification of candidate causal variants in regions associated with risk of common diseases is complicated by linkage disequilibrium (LD) and multiple association signals. Nonetheless, accurate maps of these variants are needed, both to fully exploit detailed cell specific chromatin annotation data to highlight disease causal mechanisms and cells, and for design of the functional studies that will ultimately be required to confirm causal mechanisms. We adapted a Bayesian evolutionary stochastic search algorithm to the fine mapping problem, and demonstrated its improved performance over conventional stepwise and regularised regression through simulation studies. We then applied it to fine map the established multiple sclerosis (MS) and type 1 diabetes (T1D) associations in the IL-2RA (CD25) gene region. For T1D, both stepwise and stochastic search approaches identified four T1D association signals, with the major effect tagged by the single nucleotide polymorphism, rs12722496. In contrast, for MS, the stochastic search found two distinct competing models: a single candidate causal variant, tagged by rs2104286 and reported previously using stepwise analysis; and a more complex model with two association signals, one of which was tagged by the major T1D associated rs12722496 and the other by rs56382813. There is low to moderate LD between rs2104286 and both rs12722496 and rs56382813 (r2 ≃ 0:3) and our two SNP model could not be recovered through a forward stepwise search after conditioning on rs2104286. Both signals in the two variant model for MS affect CD25 expression on distinct subpopulations of CD4+ T cells, which are key cells in the autoimmune process. The results support a shared causal variant for T1D and MS. Our study illustrates the benefit of using a purposely designed model search strategy for fine mapping and the advantage of combining disease and protein expression data.


Assuntos
Teorema de Bayes , Mapeamento Cromossômico/métodos , Diabetes Mellitus Tipo 1/genética , Predisposição Genética para Doença , Esclerose Múltipla/genética , Algoritmos , Mapeamento Cromossômico/estatística & dados numéricos , Haplótipos , Humanos , Subunidade alfa de Receptor de Interleucina-2/genética , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Processos Estocásticos
12.
Nat Commun ; 6: 7000, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25965853

RESUMO

Seasonal variations are rarely considered a contributing component to human tissue function or health, although many diseases and physiological process display annual periodicities. Here we find more than 4,000 protein-coding mRNAs in white blood cells and adipose tissue to have seasonal expression profiles, with inverted patterns observed between Europe and Oceania. We also find the cellular composition of blood to vary by season, and these changes, which differ between the United Kingdom and The Gambia, could explain the gene expression periodicity. With regards to tissue function, the immune system has a profound pro-inflammatory transcriptomic profile during European winter, with increased levels of soluble IL-6 receptor and C-reactive protein, risk biomarkers for cardiovascular, psychiatric and autoimmune diseases that have peak incidences in winter. Circannual rhythms thus require further exploration as contributors to various aspects of human physiology and disease.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Regulação da Expressão Gênica/fisiologia , Genes MHC da Classe II/fisiologia , Estações do Ano , Fatores de Transcrição ARNTL/genética , Adaptação Fisiológica , Tecido Adiposo/metabolismo , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Europa (Continente) , Gâmbia , Humanos , Lactente , Recém-Nascido , Leucócitos/metabolismo , Pessoa de Meia-Idade , Oceania , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma , Adulto Jovem
13.
Diabetologia ; 58(4): 781-90, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25652388

RESUMO

AIMS/HYPOTHESIS: Type 1 diabetes results from the autoimmune destruction of insulin-secreting pancreatic beta cells by T cells. Despite the established role of T cells in the pathogenesis of the disease, to date, with the exception of the identification of islet-specific T effector (Teff) cells, studies have mostly failed to identify reproducible alterations in the frequency or function of T cell subsets in peripheral blood from patients with type 1 diabetes. METHODS: We assessed the production of the proinflammatory cytokines IL-21, IFN-γ and IL-17 in peripheral blood mononuclear cells from 69 patients with type 1 diabetes and 61 healthy donors. In an additional cohort of 30 patients with type 1 diabetes and 32 healthy donors, we assessed the frequency of circulating T follicular helper (Tfh) cells in whole blood. IL-21 and IL-17 production was also measured in peripheral blood mononuclear cells (PBMCs) from a subset of 46 of the 62 donors immunophenotyped for Tfh. RESULTS: We found a 21.9% (95% CI 5.8, 40.2; p = 3.9 × 10(-3)) higher frequency of IL-21(+) CD45RA(-) memory CD4(+) Teffs in patients with type 1 diabetes (geometric mean 5.92% [95% CI 5.44, 6.44]) compared with healthy donors (geometric mean 4.88% [95% CI 4.33, 5.50]). Consistent with this finding, we found a 14.9% increase in circulating Tfh cells in the patients (95% CI 2.9, 26.9; p = 0.016). CONCLUSIONS/INTERPRETATION: These results indicate that increased IL-21 production is likely to be an aetiological factor in the pathogenesis of type 1 diabetes that could be considered as a potential therapeutic target.


Assuntos
Diabetes Mellitus Tipo 1/imunologia , Memória Imunológica , Interleucinas/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Adolescente , Adulto , Biomarcadores/metabolismo , Estudos de Casos e Controles , Células Cultivadas , Criança , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/metabolismo , Feminino , Humanos , Imunofenotipagem , Interferon gama/imunologia , Interferon gama/metabolismo , Interleucina-17/imunologia , Interleucina-17/metabolismo , Interleucinas/metabolismo , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Linfócitos T Auxiliares-Indutores/metabolismo , Regulação para Cima , Adulto Jovem
14.
Hum Mol Genet ; 24(6): 1774-90, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25424174

RESUMO

Copy number variants (CNVs) have been proposed as a possible source of 'missing heritability' in complex human diseases. Two studies of type 1 diabetes (T1D) found null associations with common copy number polymorphisms, but CNVs of low frequency and high penetrance could still play a role. We used the Log-R-ratio intensity data from a dense single nucleotide polymorphism (SNP) array, ImmunoChip, to detect rare CNV deletions (rDELs) and duplications (rDUPs) in 6808 T1D cases, 9954 controls and 2206 families with T1D-affected offspring. Initial analyses detected CNV associations. However, these were shown to be false-positive findings, failing replication with polymerase chain reaction. We developed a pipeline of quality control (QC) tests that were calibrated using systematic testing of sensitivity and specificity. The case-control odds ratios (OR) of CNV burden on T1D risk resulting from this QC pipeline converged on unity, suggesting no global frequency difference in rDELs or rDUPs. There was evidence that deletions could impact T1D risk for a small minority of cases, with enrichment for rDELs longer than 400 kb (OR = 1.57, P = 0.005). There were also 18 de novo rDELs detected in affected offspring but none for unaffected siblings (P = 0.03). No specific CNV regions showed robust evidence for association with T1D, although frequencies were lower than expected (most less than 0.1%), substantially reducing statistical power, which was examined in detail. We present an R-package, plumbCNV, which provides an automated approach for QC and detection of rare CNVs that can facilitate equivalent analyses of large-scale SNP array datasets.


Assuntos
Artefatos , Variações do Número de Cópias de DNA , Diabetes Mellitus Tipo 1/genética , Técnicas de Genotipagem/métodos , Adolescente , Criança , Pré-Escolar , Interpretação Estatística de Dados , Predisposição Genética para Doença , Humanos , Controle de Qualidade , Sensibilidade e Especificidade , Deleção de Sequência , Software
15.
Genet Epidemiol ; 38(8): 661-70, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25371288

RESUMO

Pathway analysis can complement point-wise single nucleotide polymorphism (SNP) analysis in exploring genomewide association study (GWAS) data to identify specific disease-associated genes that can be candidate causal genes. We propose a straightforward methodology that can be used for conducting a gene-based pathway analysis using summary GWAS statistics in combination with widely available reference genotype data. We used this method to perform a gene-based pathway analysis of a type 1 diabetes (T1D) meta-analysis GWAS (of 7,514 cases and 9,045 controls). An important feature of the conducted analysis is the removal of the major histocompatibility complex gene region, the major genetic risk factor for T1D. Thirty-one of the 1,583 (2%) tested pathways were identified to be enriched for association with T1D at a 5% false discovery rate. We analyzed these 31 pathways and their genes to identify SNPs in or near these pathway genes that showed potentially novel association with T1D and attempted to replicate the association of 22 SNPs in additional samples. Replication P-values were skewed (P=9.85×10-11) with 12 of the 22 SNPs showing P<0.05. Support, including replication evidence, was obtained for nine T1D associated variants in genes ITGB7 (rs11170466, P=7.86×10-9), NRP1 (rs722988, 4.88×10-8), BAD (rs694739, 2.37×10-7), CTSB (rs1296023, 2.79×10-7), FYN (rs11964650, P=5.60×10-7), UBE2G1 (rs9906760, 5.08×10-7), MAP3K14 (rs17759555, 9.67×10-7), ITGB1 (rs1557150, 1.93×10-6), and IL7R (rs1445898, 2.76×10-6). The proposed methodology can be applied to other GWAS datasets for which only summary level data are available.


Assuntos
Diabetes Mellitus Tipo 1/genética , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes
16.
BMC Genomics ; 15: 274, 2014 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-24720548

RESUMO

BACKGROUND: Killer Immunoglobulin-like Receptors (KIRs) are surface receptors of natural killer cells that bind to their corresponding Human Leukocyte Antigen (HLA) class I ligands, making them interesting candidate genes for HLA-associated autoimmune diseases, including type 1 diabetes (T1D). However, allelic and copy number variation in the KIR region effectively mask it from standard genome-wide association studies: single nucleotide polymorphism (SNP) probes targeting the region are often discarded by standard genotype callers since they exhibit variable cluster numbers. Quantitative Polymerase Chain Reaction (qPCR) assays address this issue. However, their cost is prohibitive at the sample sizes required for detecting effects typically observed in complex genetic diseases. RESULTS: We propose a more powerful and cost-effective alternative, which combines signals from SNPs with more than three clusters found in existing datasets, with qPCR on a subset of samples. First, we showed that noise and batch effects in multiplexed qPCR assays are addressed through normalisation and simultaneous copy number calling of multiple genes. Then, we used supervised classification to impute copy numbers of specific KIR genes from SNP signals. We applied this method to assess copy number variation in two KIR genes, KIR3DL1 and KIR3DS1, which are suitable candidates for T1D susceptibility since they encode the only KIR molecules known to bind with HLA-Bw4 epitopes. We find no association between KIR3DL1/3DS1 copy number and T1D in 6744 cases and 5362 controls; a sample size twenty-fold larger than in any previous KIR association study. Due to our sample size, we can exclude odds ratios larger than 1.1 for the common KIR3DL1/3DS1 copy number groups at the 5% significance level. CONCLUSION: We found no evidence of association of KIR3DL1/3DS1 copy number with T1D, either overall or dependent on HLA-Bw4 epitope. Five other KIR genes, KIR2DS4, KIR2DL3, KIR2DL5, KIR2DS5 and KIR2DS1, in high linkage disequilibrium with KIR3DL1 and KIR3DS1, are also unlikely to be significantly associated. Our approach could potentially be applied to other KIR genes to allow cost effective assaying of gene copy number in large samples.


Assuntos
Dosagem de Genes , Polimorfismo de Nucleotídeo Único , Receptores KIR/genética , Alelos , Estudos de Casos e Controles , Diabetes Mellitus Tipo 1/genética , Predisposição Genética para Doença , Antígenos HLA-A/genética , Antígenos HLA-B/genética , Humanos , Reação em Cadeia da Polimerase Multiplex , Reação em Cadeia da Polimerase em Tempo Real , Receptores KIR3DL1/genética , Receptores KIR3DS1/genética
17.
Diabetes ; 63(7): 2538-50, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24561305

RESUMO

Diagnosis of the autoimmune disease type 1 diabetes (T1D) is preceded by the appearance of circulating autoantibodies to pancreatic islets. However, almost nothing is known about events leading to this islet autoimmunity. Previous epidemiological and genetic data have associated viral infections and antiviral type I interferon (IFN) immune response genes with T1D. Here, we first used DNA microarray analysis to identify IFN-ß-inducible genes in vitro and then used this set of genes to define an IFN-inducible transcriptional signature in peripheral blood mononuclear cells from a group of active systemic lupus erythematosus patients (n = 25). Using this predefined set of 225 IFN signature genes, we investigated the expression of the signature in cohorts of healthy controls (n = 87), patients with T1D (n = 64), and a large longitudinal birth cohort of children genetically predisposed to T1D (n = 109; 454 microarrayed samples). Expression of the IFN signature was increased in genetically predisposed children before the development of autoantibodies (P = 0.0012) but not in patients with established T1D. Upregulation of IFN-inducible genes was transient, temporally associated with a recent history of upper respiratory tract infections (P = 0.0064), and marked by increased expression of SIGLEC-1 (CD169), a lectin-like receptor expressed on CD14(+) monocytes. DNA variation in IFN-inducible genes altered T1D risk (P = 0.007), as exemplified by IFIH1, one of the genes in our IFN signature for which increased expression is a known risk factor for disease. These findings identify transient increased expression of type I IFN genes in preclinical diabetes as a risk factor for autoimmunity in children with a genetic predisposition to T1D.


Assuntos
Autoimunidade/genética , Diabetes Mellitus Tipo 1/genética , Interferon Tipo I/imunologia , Transcriptoma/imunologia , Adolescente , Adulto , Criança , Estudos de Coortes , Diabetes Mellitus Tipo 1/imunologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Predisposição Genética para Doença , Humanos , Interferon Tipo I/farmacologia , Masculino , Pessoa de Meia-Idade , Risco , Transcriptoma/efeitos dos fármacos , Adulto Jovem
18.
PLoS Genet ; 9(4): e1003444, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23593036

RESUMO

Inflammation, which is directly regulated by interleukin-6 (IL-6) signaling, is implicated in the etiology of several chronic diseases. Although a common, non-synonymous variant in the IL-6 receptor gene (IL6R Asp358Ala; rs2228145 A>C) is associated with the risk of several common diseases, with the 358Ala allele conferring protection from coronary heart disease (CHD), rheumatoid arthritis (RA), atrial fibrillation (AF), abdominal aortic aneurysm (AAA), and increased susceptibility to asthma, the variant's effect on IL-6 signaling is not known. Here we provide evidence for the association of this non-synonymous variant with the risk of type 1 diabetes (T1D) in two independent populations and confirm that rs2228145 is the major determinant of the concentration of circulating soluble IL-6R (sIL-6R) levels (34.6% increase in sIL-6R per copy of the minor allele 358Ala; rs2228145 [C]). To further investigate the molecular mechanism of this variant, we analyzed expression of IL-6R in peripheral blood mononuclear cells (PBMCs) in 128 volunteers from the Cambridge BioResource. We demonstrate that, although 358Ala increases transcription of the soluble IL6R isoform (P = 8.3×10⁻²²) and not the membrane-bound isoform, 358Ala reduces surface expression of IL-6R on CD4+ T cells and monocytes (up to 28% reduction per allele; P≤5.6×10⁻²²). Importantly, reduced expression of membrane-bound IL-6R resulted in impaired IL-6 responsiveness, as measured by decreased phosphorylation of the transcription factors STAT3 and STAT1 following stimulation with IL-6 (P≤5.2×10⁻7). Our findings elucidate the regulation of IL-6 signaling by IL-6R, which is causally relevant to several complex diseases, identify mechanisms for new approaches to target the IL-6/IL-6R axis, and anticipate differences in treatment response to IL-6 therapies based on this common IL6R variant.


Assuntos
Estudos de Associação Genética , Inflamação , Isoformas de Proteínas , Receptores de Interleucina-6 , Alelos , Substituição de Aminoácidos/genética , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/genética , Humanos , Inflamação/sangue , Inflamação/genética , Inflamação/metabolismo , Leucócitos Mononucleares/metabolismo , Mutação , Fosforilação , Isoformas de Proteínas/sangue , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores de Interleucina-6/sangue , Receptores de Interleucina-6/genética , Receptores de Interleucina-6/metabolismo , Fatores de Risco , Transdução de Sinais
19.
J Immunol ; 190(6): 2554-66, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23418630

RESUMO

As the thymus involutes with age, the maintenance of peripheral naive T cells in humans becomes strongly dependent on peripheral cell division. However, mechanisms that orchestrate homeostatic division remain unclear. In this study we present evidence that the frequency of naive CD4 T cells that express CD25 (IL-2 receptor α-chain) increases with age on subsets of both CD31(+) and CD31(-) naive CD4 T cells. Analyses of TCR excision circles from sorted subsets indicate that CD25(+) naive CD4 T cells have undergone more rounds of homeostatic proliferation than their CD25(-) counterparts in both the CD31(+) and CD31(-) subsets, indicating that CD25 is a marker of naive CD4 T cells that have preferentially responded to survival signals from self-Ags or cytokines. CD25 expression on CD25(-) naive CD4 T cells can be induced by IL-7 in vitro in the absence of TCR activation. Although CD25(+) naive T cells respond to lower concentrations of IL-2 as compared with their CD25(-) counterparts, IL-2 responsiveness is further increased in CD31(-) naive T cells by their expression of the signaling IL-2 receptor ß-chain CD122, forming with common γ-chain functional high-affinity IL-2 receptors. CD25 plays a role during activation: CD25(+) naive T cells stimulated in an APC-dependent manner were shown to produce increased levels of IL-2 as compared with their CD25(-) counterparts. This study establishes CD25(+) naive CD4 T cells, which are further delineated by CD31 expression, as a major functionally distinct immune cell subset in humans that warrants further characterization in health and disease.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Diferenciação Celular/imunologia , Senescência Celular/imunologia , Receptores de Interleucina-2/metabolismo , Timo/imunologia , Timo/metabolismo , Adulto , Fatores Etários , Linfócitos T CD4-Positivos/citologia , Morte Celular/genética , Morte Celular/imunologia , Diferenciação Celular/genética , Células Cultivadas , Senescência Celular/genética , Criança , Humanos , Imunofenotipagem , Subunidade alfa de Receptor de Interleucina-2/biossíntese , Subunidade alfa de Receptor de Interleucina-2/sangue , Subunidade alfa de Receptor de Interleucina-2/genética , Ligação Proteica/genética , Ligação Proteica/imunologia , Receptores de Interleucina-2/biossíntese , Receptores de Interleucina-2/fisiologia , Timo/citologia , Adulto Jovem
20.
Diabetes ; 61(11): 3012-7, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22891215

RESUMO

The common genetic loci that independently influence the risk of type 1 diabetes have largely been determined. Their interactions with age-at-diagnosis of type 1 diabetes, sex, or the major susceptibility locus, HLA class II, remain mostly unexplored. A large collection of more than 14,866 type 1 diabetes samples (6,750 British diabetic individuals and 8,116 affected family samples of European descent) were genotyped at 38 confirmed type 1 diabetes-associated non-HLA regions and used to test for interaction of association with age-at-diagnosis, sex, and HLA class II genotypes using regression models. The alleles that confer susceptibility to type 1 diabetes at interleukin-2 (IL-2), IL2/4q27 (rs2069763) and renalase, FAD-dependent amine oxidase (RNLS)/10q23.31 (rs10509540), were associated with a lower age-at-diagnosis (P = 4.6 × 10⁻6 and 2.5 × 10⁻5, respectively). For both loci, individuals carrying the susceptible homozygous genotype were, on average, 7.2 months younger at diagnosis than those carrying the protective homozygous genotypes. In addition to protein tyrosine phosphatase nonreceptor type 22 (PTPN22), evidence of statistical interaction between HLA class II genotypes and rs3087243 at cytotoxic T-lymphocyte antigen 4 (CTLA4)/2q33.2 was obtained (P = 7.90 × 10⁻5). No evidence of differential risk by sex was obtained at any loci (P ≥ 0.01). Statistical interaction effects can be detected in type 1 diabetes although they provide a relatively small contribution to our understanding of the familial clustering of the disease.


Assuntos
Diabetes Mellitus Tipo 1/epidemiologia , Diabetes Mellitus Tipo 1/genética , Epistasia Genética , Interleucina-2/genética , Monoaminoxidase/genética , Polimorfismo de Nucleotídeo Único , Proteína Tirosina Fosfatase não Receptora Tipo 22/genética , Adulto , Idade de Início , Alelos , Antígeno CTLA-4/genética , Antígeno CTLA-4/metabolismo , Estudos de Casos e Controles , Estudos de Coortes , Diabetes Mellitus Tipo 1/etnologia , Saúde da Família , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Interleucina-2/metabolismo , Masculino , Monoaminoxidase/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 22/metabolismo , Análise de Regressão , População Branca
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...