Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Blood Cancer Discov ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747505

RESUMO

Chimeric antigen receptor (CAR) T cell therapy produces high response rates in refractory B-cell non-Hodgkin lymphoma (NHL), but long-term data are minimal to date. Here, we present long-term follow-up of a pilot trial testing a CD20-targeting 3rd generation CAR in patients with relapsed B-cell lymphomas following cyclophosphamide-only lymphodepletion. Two of the 3 patients in the trial, with mantle cell lymphoma and follicular lymphoma, had remissions lasting more than 7 years, though they ultimately relapsed. The absence of B cell aplasia in both patients suggested a lack of functional CAR T cell persistence, leading to the hypothesis that endogenous immune responses were responsible for these long remissions. Correlative immunologic analyses supported this hypothesis, with evidence of new humoral and cellular anti-tumor immune responses proximal to clinical response time points. Collectively, our results suggest that CAR T cell therapy may facilitate epitope spreading and endogenous immune response formation in lymphomas.

2.
Clin Cancer Res ; 30(6): 1189-1199, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37851052

RESUMO

PURPOSE: Merkel cell carcinoma (MCC) is a highly immunogenic skin cancer. Although essentially all MCCs are antigenic through viral antigens or high tumor mutation burden, MCC has a response rate of only approximately 50% to PD-(L)1 blockade suggesting barriers to T-cell responses. Prior studies of MCC immunobiology have focused on CD8 T-cell infiltration and their exhaustion status, while the role of innate immunity, particularly myeloid cells, in MCC remains underexplored. EXPERIMENTAL DESIGN: We utilized single-cell transcriptomics from 9 patients with MCC and multiplex IHC staining of 54 patients' preimmunotherapy tumors, to identify myeloid cells and evaluate association with immunotherapy response. RESULTS: Single-cell transcriptomics identified tumor-associated macrophages (TAM) as the dominant myeloid component within MCC tumors. These TAMs express an immunosuppressive gene signature characteristic of monocytic myeloid-derived suppressor cells and importantly express several targetable immune checkpoint molecules, including PD-L1 and LILRB receptors, that are not present on tumor cells. Analysis of 54 preimmunotherapy tumor samples showed that a subset of TAMs (CD163+, CD14+, S100A8+) selectively infiltrated tumors that had significant CD8 T cells. Indeed, higher TAM prevalence was associated with resistance to PD-1 blockade. While spatial interactions between TAMs and CD8 T cells were not associated with response, myeloid transcriptomic data showed evidence for cytokine signaling and expression of LILRB receptors, suggesting potential immunosuppressive mechanisms. CONCLUSIONS: This study further characterizes TAMs in MCC tumors and provides insights into their possible immunosuppressive mechanism. TAMs may reduce the likelihood of treatment response in MCC by counteracting the benefit of CD8 T-cell infiltration. See related commentary by Silk and Davar, p. 1076.


Assuntos
Carcinoma de Célula de Merkel , Neoplasias Cutâneas , Humanos , Carcinoma de Célula de Merkel/tratamento farmacológico , Carcinoma de Célula de Merkel/genética , Carcinoma de Célula de Merkel/metabolismo , Receptor de Morte Celular Programada 1 , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Linfócitos T CD8-Positivos , Células Mieloides/metabolismo
3.
Blood Adv ; 7(12): 2718-2730, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-36469024

RESUMO

Therapy with CD19-directed chimeric antigen receptor (CAR) T cells has transformed the treatment of advanced B-cell malignancies. However, loss of or low antigen expression can enable tumor escape and limit the duration of responses achieved with CAR T-cell therapy. Engineering bispecific CAR T cells that target 2 tumor antigens could overcome antigen-negative escape. We found that CD79a and b, which are heterodimeric components of the B-cell receptor, were expressed on 84.3% of lymphoma cases using immunohistochemistry, and 87.3% of CD79ab-positive tumors also coexpressed CD19. We generated 3 bispecific permutations: tandem, bicistronic, and pooled products of CD79a-CD19 or CD79b-CD19 CAR T cells and showed that bispecific CAR T cells prevented the outgrowth of antigen-negative cells in a CD19-loss lymphoma xenograft model. However, tandem and bicistronic CAR T cells were less effective than monospecific CD19 or CD79a CAR T cells for the treatment of tumors that only expressed CD19 or CD79, respectively. When compared with monospecific CAR T cells, T cells expressing a tandem CAR exhibited reduced binding of each target antigen, and T cells expressing a bicistronic CAR vector exhibited reduced phosphorylation of downstream CAR signaling molecules. Our study showed that despite added specificity, tandem and bicistronic CAR T cells exhibit different defects that impair recognition of tumor cells expressing a single antigen. Our data provide support for targeting multiple B-cell antigens to improve efficacy and identify areas for improvement in bispecific receptor designs.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T , Imunoterapia Adotiva , Neoplasias/metabolismo , Linfócitos B/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
4.
J Immunother Cancer ; 10(9)2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36252564

RESUMO

BACKGROUND: Merkel cell carcinoma (MCC) often responds to PD-1 pathway blockade, regardless of tumor-viral status (~80% of cases driven by the Merkel cell polyomavirus (MCPyV)). Prior studies have characterized tumor-specific T cell responses to MCPyV, which have typically been CD8, but little is known about the T cell response to UV-induced neoantigens. METHODS: A patient in her mid-50s with virus-negative (VN) MCC developed large liver metastases after a brief initial response to chemotherapy. She received anti-PD-L1 (avelumab) and had a partial response within 4 weeks. Whole exome sequencing (WES) was performed to determine potential neoantigen peptides. Characterization of peripheral blood neoantigen T cell responses was evaluated via interferon-gamma (IFNγ) ELISpot, flow cytometry and single-cell RNA sequencing. Tumor-resident T cells were characterized by multiplexed immunohistochemistry. RESULTS: WES identified 1027 tumor-specific somatic mutations, similar to the published average of 1121 for VN-MCCs. Peptide prediction with a binding cut-off of ≤100 nM resulted in 77 peptides that were synthesized for T cell assays. Although peptides were predicted based on class I HLAs, we identified circulating CD4 T cells targeting 5 of 77 neoantigens. In contrast, no neoantigen-specific CD8 T cell responses were detected. Neoantigen-specific CD4 T cells were undetectable in blood before anti-PD-L1 therapy but became readily detectible shortly after starting therapy. T cells produced robust IFNγ when stimulated by neoantigen (mutant) peptides but not by the normal (wild-type) peptides. Single cell RNAseq showed neoantigen-reactive T cells expressed the Th1-associated transcription factor (T-bet) and associated cytokines. These CD4 T cells did not significantly exhibit cytotoxicity or non-Th1 markers. Within the pretreatment tumor, resident CD4 T cells were also Th1-skewed and expressed T-bet. CONCLUSIONS: We identified and characterized tumor-specific Th1-skewed CD4 T cells targeting multiple neoantigens in a patient who experienced a profound and durable partial response to anti-PD-L1 therapy. To our knowledge, this is the first report of neoantigen-specific T cell responses in MCC. Although CD4 and CD8 T cells recognizing viral tumor antigens are often detectible in virus-positive MCC, only CD4 T cells recognizing neoantigens were detected in this patient. These findings suggest that CD4 T cells can play an important role in the response to anti-PD-(L)1 therapy.


Assuntos
Carcinoma de Célula de Merkel , Poliomavírus das Células de Merkel , Neoplasias Cutâneas , Feminino , Humanos , Antígenos Virais de Tumores , Carcinoma de Célula de Merkel/tratamento farmacológico , Carcinoma de Célula de Merkel/genética , Linfócitos T CD4-Positivos , Interferon gama , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Fatores de Transcrição
5.
J Immunol ; 209(3): 606-620, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35817516

RESUMO

Despite recent therapeutic progress, advanced melanoma remains lethal for many patients. The composition of the immune tumor microenvironment (TME) has decisive impacts on therapy response and disease outcome, and high-dimensional analyses of patient samples reveal the heterogeneity of the immune TME. Macrophages infiltrate TMEs and generally associate with tumor progression, but the underlying mechanisms are incompletely understood. Because experimental systems are needed to elucidate the functional properties of these cells, we developed a humanized mouse model reconstituted with human immune cells and human melanoma. We used two strains of recipient mice, supporting or not supporting the development of human myeloid cells. We found that human myeloid cells favored metastatic spread of the primary tumor, thereby recapitulating the cancer-supportive role of macrophages. We next analyzed the transcriptome of human immune cells infiltrating tumors versus other tissues. This analysis identified a cluster of myeloid cells present in the TME, but not in other tissues, which do not correspond to canonical M2 cells. The transcriptome of these cells is characterized by high expression of glycolytic enzymes and multiple chemokines and by low expression of gene sets associated with inflammation and adaptive immunity. Compared with humanized mouse results, we found transcriptionally similar myeloid cells in patient-derived samples of melanoma and other cancer types. The humanized mouse model described here thus complements patient sample analyses, enabling further elucidation of fundamental principles in melanoma biology beyond M1/M2 macrophage polarization. The model can also support the development and evaluation of candidate antitumor therapies.


Assuntos
Macrófagos , Melanoma , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Ativação de Macrófagos , Melanoma/patologia , Camundongos , Microambiente Tumoral
6.
Cancers (Basel) ; 14(5)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35267598

RESUMO

Patients with metastatic soft tissue sarcoma (STS) have a poor prognosis and few available systemic treatment options. Trabectedin is currently being investigated as a potential adjunct to immunotherapy as it has been previously shown to kill tumor-associated macrophages. In this retrospective study, we sought to identify biomarkers that would be relevant to trials combining trabectedin with immunotherapy. We performed a single-center retrospective study of sarcoma patients treated with trabectedin with long-term follow-up. Multiplex gene expression analysis using the NanoString platform was assessed, and an exploratory analysis using the lasso-penalized Cox regression and kernel association test for survival (MiRKAT-S) methods investigated tumor-associated immune cells and correlated their gene signatures to patient survival. In total, 147 sarcoma patients treated with trabectedin were analyzed, with a mean follow-up time of 5 years. Patients with fewer prior chemotherapy regimens were more likely to stay on trabectedin longer (pairwise correlation = -0.17, p = 0.04). At 5 years, increased PD-L1 expression corresponded to worse outcomes (HR = 1.87, p = 0.04, q = 0.199). Additionally, six immunologic gene signatures were associated with up to 7-year survival by MiRKAT-S, notably myeloid-derived suppressor cells (p = 0.023, q = 0.058) and M2 macrophages (p = 0.03, q = 0.058). We found that the number of chemotherapy regimens prior to trabectedin negatively correlated with the number of trabectedin cycles received, suggesting that patients may benefit from receiving trabectedin earlier in their therapy course. The correlation of trabectedin outcomes with immune cell infiltrates supports the hypothesis that trabectedin may function as an immune modulator and supports ongoing efforts to study trabectedin in combination with immunotherapy. Furthermore, tumors with an immunosuppressive microenvironment characterized by macrophage infiltration and high PD-L1 expression were less likely to benefit from trabectedin, which could guide clinicians in future treatment decisions.

7.
Clin Cancer Res ; 28(11): 2306-2312, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35349638

RESUMO

PURPOSE: Leiomyosarcoma and liposarcoma frequently express PD-L1 but are generally resistant to PD-1/PD-L1 inhibition (immune checkpoint inhibitor). Trabectedin is FDA approved for leiomyosarcoma and liposarcoma. This study aimed to evaluate the safety and efficacy of trabectedin with anti-PD-L1 antibody avelumab in patients with advanced leiomyosarcoma and liposarcoma. PATIENTS AND METHODS: A single-arm, open-label, Phase 1/2 study tested avelumab with trabectedin for advanced leiomyosarcoma and liposarcoma. The phase I portion evaluated safety and feasibility of trabectedin (1, 1.2, and 1.5 mg/m2) with avelumab at standard dosing. Primary endpoint of the phase II portion was objective response rate (ORR) by RECIST 1.1. Correlative studies included T-cell receptor sequencing (TCRseq), multiplex IHC, and tumor gene expression. RESULTS: 33 patients were evaluable: 24 with leiomyosarcoma (6 uterine and 18 non-uterine) and 11 with liposarcoma. In Phase 1, dose-limiting toxicities (DLT) were observed in 2 of 6 patients at both trabectedin 1.2 and 1.5 mg/m2. The recommended Phase 2 dose (RP2D) was 1.0 mg/m2 trabectedin and 800-mg avelumab. Of 23 patients evaluable at RP2D, 3 (13%) had partial response (PR) and 10 (43%) had stable disease (SD) as best response. Six-month PFS was 52%; median PFS was 8.3 months. Patients with PR had higher Simpson Clonality score on TCRseq from peripheral blood mononuclear cells versus those with SD (0.182 vs. 0.067, P = 0.02) or progressive disease (0.182 vs. 0.064, P = 0.01). CONCLUSIONS: Although the trial did not meet the primary objective response rate endpoint, PFS compared favorably with prior studies of trabectedin warranting further investigation.


Assuntos
Leiomiossarcoma , Lipossarcoma , Anticorpos Monoclonais Humanizados , Antineoplásicos Alquilantes/uso terapêutico , Antígeno B7-H1/genética , Humanos , Leiomiossarcoma/tratamento farmacológico , Leiomiossarcoma/genética , Leiomiossarcoma/patologia , Leucócitos Mononucleares/patologia , Lipossarcoma/tratamento farmacológico , Lipossarcoma/genética , Lipossarcoma/patologia , Trabectedina
8.
Clin Cancer Res ; 28(8): 1701-1711, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35115306

RESUMO

PURPOSE: To characterize changes in the soft-tissue sarcoma (STS) tumor immune microenvironment induced by standard neoadjuvant therapy with the goal of informing neoadjuvant immunotherapy trial design. EXPERIMENTAL DESIGN: Paired pre- and postneoadjuvant therapy specimens were retrospectively identified for 32 patients with STSs and analyzed by three modalities: multiplexed IHC, NanoString, and RNA sequencing with ImmunoPrism analysis. RESULTS: All 32 patients, representing a variety of STS histologic subtypes, received neoadjuvant radiotherapy and 21 (66%) received chemotherapy prior to radiotherapy. The most prevalent immune cells in the tumor before neoadjuvant therapy were myeloid cells (45% of all immune cells) and B cells (37%), with T (13%) and natural killer (NK) cells (5%) also present. Neoadjuvant therapy significantly increased the total immune cells infiltrating the tumors across all histologic subtypes for patients receiving neoadjuvant radiotherapy with or without chemotherapy. An increase in the percentage of monocytes and macrophages, particularly M2 macrophages, B cells, and CD4+ T cells was observed postneoadjuvant therapy. Upregulation of genes and cytokines associated with antigen presentation was also observed, and a favorable pathologic response (≥90% necrosis postneoadjuvant therapy) was associated with an increase in monocytic infiltrate. Upregulation of the T-cell checkpoint TIM3 and downregulation of OX40 were observed posttreatment. CONCLUSIONS: Standard neoadjuvant therapy induces both immunostimulatory and immunosuppressive effects within a complex sarcoma microenvironment dominated by myeloid and B cells. This work informs ongoing efforts to incorporate immune checkpoint inhibitors and novel immunotherapies into the neoadjuvant setting for STSs.


Assuntos
Sarcoma , Neoplasias de Tecidos Moles , Humanos , Imunidade , Terapia Neoadjuvante , Prognóstico , Estudos Retrospectivos , Sarcoma/tratamento farmacológico , Sarcoma/terapia , Microambiente Tumoral
9.
Cancer Res Commun ; 2(8): 904-913, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36923305

RESUMO

Purpose: Mavorixafor is an oral, selective inhibitor of the CXCR4 chemokine receptor that modulates immune cell trafficking. A biomarker-driven phase Ib study (NCT02823405) was conducted in 16 patients with melanoma to investigate the hypothesis that mavorixafor favorably modulates immune cell profiles in the tumor microenvironment (TME) and to evaluate the safety of mavorixafor alone and in combination with pembrolizumab. Experimental Design: Serial biopsies of melanoma lesions were assessed after 3 weeks of mavorixafor monotherapy and after 6 weeks of combination treatment for immune cell markers by NanoString analysis for gene expression and by multiplexed immunofluorescent staining for in situ protein expression. Serum samples taken at biopsy timepoints were evaluated for key chemokine and cytokine alterations using the Myriad Rules Based Medicine multiplex immunoassays. Results: Within the TME, mavorixafor alone increased CD8+ T-cell infiltration, granzyme B signal, antigen presentation machinery, and both tumor inflammatory signature (TIS) and IFNγ gene expression signature scores. Increases in the key serum cytokines CXCL9 and CXCL10 were further enhanced when mavorixafor was combined with pembrolizumab. Adverse events (AE), as assessed by the investigator according to NCI Common Terminology Criteria for Adverse Events (v4.03), related to either mavorixafor or pembrolizumab (≥15%) were diarrhea, fatigue, maculopapular rash, and dry eye. Reported AEs were all ≤ grade 3. Conclusion/Discussion: Treatment with single-agent mavorixafor resulted in enhanced immune cell infiltration and activation in the TME, leading to increases in TIS and IFNγ gene signatures. Mavorixafor as a single agent, and in combination with pembrolizumab, has an acceptable safety profile. These data support further investigation of the use of mavorixafor for patients unresponsive to checkpoint inhibitors. Significance: Despite survival improvements in patients with melanoma treated with checkpoint inhibitor therapy, a significant unmet medical need exists for therapies that enhance effectiveness. We propose that mavorixafor sensitizes the melanoma tumor microenvironment and enhances the activity of checkpoint inhibitors, and thereby may translate to a promising treatment for broader patient populations.


Assuntos
Melanoma , Microambiente Tumoral , Humanos , Melanoma/tratamento farmacológico , Aminoquinolinas , Benzimidazóis , Citocinas , Quimiocinas , Receptores CXCR4/genética
10.
Nat Commun ; 12(1): 6726, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795254

RESUMO

Cutaneous T cell lymphomas (CTCL) are rare but aggressive cancers without effective treatments. While a subset of patients derive benefit from PD-1 blockade, there is a critically unmet need for predictive biomarkers of response. Herein, we perform CODEX multiplexed tissue imaging and RNA sequencing on 70 tumor regions from 14 advanced CTCL patients enrolled in a pembrolizumab clinical trial (NCT02243579). We find no differences in the frequencies of immune or tumor cells between responders and non-responders. Instead, we identify topographical differences between effector PD-1+ CD4+ T cells, tumor cells, and immunosuppressive Tregs, from which we derive a spatial biomarker, termed the SpatialScore, that correlates strongly with pembrolizumab response in CTCL. The SpatialScore coincides with differences in the functional immune state of the tumor microenvironment, T cell function, and tumor cell-specific chemokine recruitment and is validated using a simplified, clinically accessible tissue imaging platform. Collectively, these results provide a paradigm for investigating the spatial balance of effector and suppressive T cell activity and broadly leveraging this biomarker approach to inform the clinical use of immunotherapies.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Imunoterapia/métodos , Linfoma Cutâneo de Células T/terapia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Neoplasias Cutâneas/terapia , Idoso , Antineoplásicos Imunológicos/uso terapêutico , Linfócitos T CD4-Positivos/imunologia , Feminino , Humanos , Estimativa de Kaplan-Meier , Ativação Linfocitária/imunologia , Linfoma Cutâneo de Células T/imunologia , Linfoma Cutâneo de Células T/metabolismo , Masculino , Pessoa de Meia-Idade , Micose Fungoide/imunologia , Micose Fungoide/metabolismo , Micose Fungoide/terapia , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Síndrome de Sézary/imunologia , Síndrome de Sézary/metabolismo , Síndrome de Sézary/terapia , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/metabolismo , Resultado do Tratamento
11.
J Immunother Cancer ; 9(8)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34465597

RESUMO

BACKGROUND: Dedifferentiated liposarcoma (DDLPS) is one of the most common soft tissue sarcoma subtypes and is devastating in the advanced/metastatic stage. Despite the observation of clinical responses to PD-1 inhibitors, little is known about the immune microenvironment in relation to patient prognosis. METHODS: We performed a retrospective study of 61 patients with DDLPS. We completed deep sequencing of the T-cell receptor (TCR) ß-chain and RNA sequencing for predictive modeling, evaluating both immune markers and tumor escape genes. Hierarchical clustering and recursive partitioning were employed to elucidate relationships of cellular infiltrates within the tumor microenvironment, while an immune score for single markers was created as a predictive tool. RESULTS: Although many DDLPS samples had low TCR clonality, high TCR clonality combined with low T-cell fraction predicted lower 3-year overall survival (p=0.05). Higher levels of CD14+ monocytes (p=0.02) inversely correlated with 3-year recurrence-free survival (RFS), while CD4+ T-cell infiltration (p=0.05) was associated with a higher RFS. Genes associated with longer RFS included PD-1 (p=0.003), ICOS (p=0.006), BTLA (p=0.033), and CTLA4 (p=0.02). In a composite immune score, CD4+ T cells had the strongest positive predictive value, while CD14+ monocytes and M2 macrophages had the strongest negative predictive values. CONCLUSIONS: Immune cell infiltration predicts clinical outcome in DDLPS, with CD4+ cells associated with better outcomes; CD14+ cells and M2 macrophages are associated with worse outcomes. Future checkpoint inhibitor studies in DDLPS should incorporate immunosequencing and gene expression profiling techniques that can generate immune landscape profiles.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Macrófagos/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Diferenciação Celular , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Lipossarcoma , Masculino , Pessoa de Meia-Idade , Avaliação de Resultados da Assistência ao Paciente , Estudos Retrospectivos , Adulto Jovem
12.
Nat Biotechnol ; 39(11): 1375-1384, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34083791

RESUMO

Recent spatial gene expression technologies enable comprehensive measurement of transcriptomic profiles while retaining spatial context. However, existing analysis methods do not address the limited resolution of the technology or use the spatial information efficiently. Here, we introduce BayesSpace, a fully Bayesian statistical method that uses the information from spatial neighborhoods for resolution enhancement of spatial transcriptomic data and for clustering analysis. We benchmark BayesSpace against current methods for spatial and non-spatial clustering and show that it improves identification of distinct intra-tissue transcriptional profiles from samples of the brain, melanoma, invasive ductal carcinoma and ovarian adenocarcinoma. Using immunohistochemistry and an in silico dataset constructed from scRNA-seq data, we show that BayesSpace resolves tissue structure that is not detectable at the original resolution and identifies transcriptional heterogeneity inaccessible to histological analysis. Our results illustrate BayesSpace's utility in facilitating the discovery of biological insights from spatial transcriptomic datasets.


Assuntos
Análise de Célula Única , Transcriptoma , Teorema de Bayes , Análise por Conglomerados , Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Transcriptoma/genética
13.
Cancer Cell ; 39(2): 193-208.e10, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33357452

RESUMO

Adoptive therapy using chimeric antigen receptor-modified T cells (CAR-T cells) is effective in hematologic but not epithelial malignancies, which cause the greatest mortality. In breast and lung cancer patients, CAR-T cells targeting the tumor-associated antigen receptor tyrosine kinase-like orphan receptor 1 (ROR1) infiltrate tumors poorly and become dysfunctional. To test strategies for enhancing efficacy, we adapted the KrasLSL-G12D/+;p53f/f autochthonous model of lung adenocarcinoma to express the CAR target ROR1. Murine ROR1 CAR-T cells transferred after lymphodepletion with cyclophosphamide (Cy) transiently control tumor growth but infiltrate tumors poorly and lose function, similar to what is seen in patients. Adding oxaliplatin (Ox) to the lymphodepletion regimen activates tumor macrophages to express T-cell-recruiting chemokines, resulting in improved CAR-T cell infiltration, remodeling of the tumor microenvironment, and increased tumor sensitivity to anti-PD-L1. Combination therapy with Ox/Cy and anti-PD-L1 synergistically improves CAR-T cell-mediated tumor control and survival, providing a strategy to improve CAR-T cell efficacy in the clinic.


Assuntos
Inibidores de Checkpoint Imunológico/imunologia , Neoplasias Pulmonares/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Animais , Antígenos de Neoplasias/imunologia , Linhagem Celular , Linhagem Celular Tumoral , Células HEK293 , Humanos , Imunoterapia Adotiva/métodos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/imunologia , Microambiente Tumoral/imunologia
14.
Nat Commun ; 11(1): 6410, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33335088

RESUMO

Immunotherapy fails to cure most cancer patients. Preclinical studies indicate that radiotherapy synergizes with immunotherapy, promoting radiation-induced antitumor immunity. Most preclinical immunotherapy studies utilize transplant tumor models, which overestimate patient responses. Here, we show that transplant sarcomas are cured by PD-1 blockade and radiotherapy, but identical treatment fails in autochthonous sarcomas, which demonstrate immunoediting, decreased neoantigen expression, and tumor-specific immune tolerance. We characterize tumor-infiltrating immune cells from transplant and primary tumors, revealing striking differences in their immune landscapes. Although radiotherapy remodels myeloid cells in both models, only transplant tumors are enriched for activated CD8+ T cells. The immune microenvironment of primary murine sarcomas resembles most human sarcomas, while transplant sarcomas resemble the most inflamed human sarcomas. These results identify distinct microenvironments in murine sarcomas that coevolve with the immune system and suggest that patients with a sarcoma immune phenotype similar to transplant tumors may benefit most from PD-1 blockade and radiotherapy.


Assuntos
Sarcoma/terapia , Análise de Célula Única/métodos , Microambiente Tumoral/imunologia , Animais , Antineoplásicos Imunológicos/farmacologia , Transplante de Medula Óssea , Linfócitos T CD8-Positivos/imunologia , Proteínas de Ligação a DNA/genética , Resistencia a Medicamentos Antineoplásicos/imunologia , Regulação Neoplásica da Expressão Gênica , Humanos , Imunoterapia , Camundongos Endogâmicos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Sarcoma/genética , Sarcoma/imunologia , Evasão Tumoral , Microambiente Tumoral/genética , Sequenciamento do Exoma
15.
J Immunother Cancer ; 8(2)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33115946

RESUMO

BACKGROUND: Though currently approved immunotherapies, including chimeric antigen receptor T cells and checkpoint blockade antibodies, have been successfully used to treat hematological and some solid tumor cancers, many solid tumors remain resistant to these modes of treatment. In solid tumors, the development of effective antitumor immune responses is hampered by restricted immune cell infiltration and an immunosuppressive tumor microenvironment (TME). An immunotherapy that infiltrates and persists in the solid TME, while providing local, stable levels of therapeutic to activate or reinvigorate antitumor immunity could overcome these challenges faced by current immunotherapies. METHODS: Using lentivirus-driven engineering, we programmed human and murine macrophages to express therapeutic payloads, including Interleukin (IL)-12. In vitro coculture studies were used to evaluate the effect of genetically engineered macrophages (GEMs) secreting IL-12 on T cells and on the GEMs themselves. The effects of IL-12 GEMs on gene expression profiles within the TME and tumor burden were evaluated in syngeneic mouse models of glioblastoma and melanoma and in human tumor slices isolated from patients with advanced gastrointestinal malignancies. RESULTS: Here, we present a cellular immunotherapy platform using lentivirus-driven genetic engineering of human and mouse macrophages to constitutively express proteins, including secreted cytokines and full-length checkpoint antibodies, as well as cytoplasmic and surface proteins that overcomes these barriers. GEMs traffic to, persist in, and express lentiviral payloads in xenograft mouse models of glioblastoma, and express a non-signaling truncated CD19 surface protein for elimination. IL-12-secreting GEMs activated T cells and induced interferon-gamma (IFNγ) in vitro and slowed tumor growth resulting in extended survival in vivo. In a syngeneic glioblastoma model, IFNγ signaling cascades were also observed in mice treated with mouse bone-marrow-derived GEMs secreting murine IL-12. These findings were reproduced in ex vivo tumor slices comprised of intact MEs. In this setting, IL-12 GEMs induced tumor cell death, chemokines and IFNγ-stimulated genes and proteins. CONCLUSIONS: Our data demonstrate that GEMs can precisely deliver titratable doses of therapeutic proteins to the TME to improve safety, tissue penetrance, targeted delivery and pharmacokinetics.


Assuntos
Engenharia Genética/métodos , Imunoterapia/métodos , Macrófagos/metabolismo , Neoplasias/imunologia , Microambiente Tumoral/imunologia , Animais , Modelos Animais de Doenças , Humanos , Camundongos
16.
Clin Cancer Res ; 25(13): 3934-3945, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30940657

RESUMO

PURPOSE: Pancreatic ductal adenocarcinoma (PDA) is rarely cured, and single-agent immune checkpoint inhibition has not demonstrated clinical benefit despite the presence of large numbers of CD8+ T cells. We hypothesized that tumor-infiltrating CD8+ T cells harbor latent antitumor activity that can be reactivated using combination immunotherapy. EXPERIMENTAL DESIGN: Preserved human PDA specimens were analyzed using multiplex IHC (mIHC) and T-cell receptor (TCR) sequencing. Fresh tumor was treated in organotypic slice culture to test the effects of combination PD-1 and CXCR4 blockade. Slices were analyzed using IHC, flow cytometry, and live fluorescent microscopy to assess tumor kill, in addition to T-cell expansion and mobilization. RESULTS: mIHC demonstrated fewer CD8+ T cells in juxtatumoral stroma containing carcinoma cells than in stroma devoid of them. Using TCR sequencing, we found clonal expansion in each tumor; high-frequency clones had multiple DNA rearrangements coding for the same amino acid binding sequence, which suggests response to common tumor antigens. Treatment of fresh human PDA slices with combination PD-1 and CXCR4 blockade led to increased tumor cell death concomitant with lymphocyte expansion. Live microscopy after combination therapy demonstrated CD8+ T-cell migration into the juxtatumoral compartment and rapid increase in tumor cell apoptosis. CONCLUSIONS: Endogenous tumor-reactive T cells are present within the human PDA tumor microenvironment and can be reactivated by combined blockade of PD-1 and CXCR4. This provides a new basis for the rational selection of combination immunotherapy for PDA.See related commentary by Medina and Miller, p. 3747.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Linfócitos T CD8-Positivos , Humanos , Receptor de Morte Celular Programada 1 , Receptores CXCR4 , Microambiente Tumoral
17.
Cancer Cell ; 35(3): 489-503.e8, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30889382

RESUMO

Many potential targets for CAR-T cells in solid tumors are expressed in some normal tissues, raising concern for off-tumor toxicity. Following lymphodepletion, CAR-T cells targeting the tumor-associated antigen ROR1 lysed tumors in mice but induced lethal bone marrow failure due to recognition of ROR1+ stromal cells. To improve selectivity, we engineered T cells with synthetic Notch (synNotch) receptors specific for EpCAM or B7-H3, which are expressed on ROR1+ tumor cells but not ROR1+ stromal cells. SynNotch receptors induced ROR1 CAR expression selectively within the tumor, resulting in tumor regression without toxicity when tumor cells were segregated from, but not when co-localized with, normal ROR1+ cells. This strategy, thus, permits safe targeting of tumors that are sufficiently separated from normal cells.


Assuntos
Imunoterapia Adotiva/métodos , Neoplasias/terapia , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Receptores de Antígenos Quiméricos/imunologia , Animais , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Células K562 , Camundongos , Neoplasias/imunologia , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Linfócitos T/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...