Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 66(6): 3866-3875, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36916802

RESUMO

Oxysterol-binding protein (OSBP) and OSBP-related protein 4 (ORP4) have emerged as potentially druggable targets in antiviral and precision cancer drug development. Multiple structurally diverse small molecules function through targeting the OSBP/ORP family of proteins, including the antiviral steroidal compounds OSW-1 and T-00127-HEV2. Here, the structure-activity relationships of oxysterols and related compound binding to human OSBP and ORP4 are characterized. Oxysterols with hydroxylation at various side chain positions (i.e., C-20, C-24, C-25, and C-27)─but not C-22─confer high affinity interactions with OSBP and ORP4. A library of 20(S)-hydroxycholesterol analogues with varying sterol side chains reveal that side chain length modifications are not well tolerated for OSBP and ORP4 interactions. This side chain requirement is contradicted by the high affinity binding of T-00127-HEV2, a steroidal compound lacking the side chain. The binding results, in combination with docking studies using homology models of OSBP and ORP4, suggest multiple modes of steroidal ligand binding to OSBP and ORP4.


Assuntos
Oxisteróis , Receptores de Esteroides , Humanos , Antivirais/farmacologia , Hidroxicolesteróis/metabolismo , Ligantes , Ligação Proteica , Receptores de Esteroides/metabolismo , Relação Estrutura-Atividade
2.
Biochemistry ; 61(1): 34-45, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34914378

RESUMO

Type-II toxin-antitoxin (TA) systems are comprised of two tightly interacting proteins, and operons encoding these systems have been identified throughout the genomes of bacteria. In contrast to secretion system effector-immunity pairs, TA systems must remain paired to protect the host cell from toxicity. Continual depletion of the antitoxin results in a shorter half-life than that of the toxin, though it is unclear if antitoxins can be effectively degraded when complexed with toxins. The current work probed the protein-protein interface of the PaParDE1 TA system, guided by an X-ray crystal structure, to determine contributions of antitoxin amino acids to interaction kinetics and affinity. These studies identified a "hotspot" position that alters the binding mode and resulting affinity (KD) from 152 pM for a 1:1 model for wild type to 25.5 and 626 nM for a 2:1 model with mutated antitoxin. This correlates with an altered induced secondary structure upon complexation with PaParE1 and increased kinetics of Lon protease digestion of the antitoxin despite the toxin presence. However, the decreased affinity at this hotspot was essentially reversed when the antitoxin dimerization region was deleted, yielding insights into complex interactions involved in the tight association. Removal of the antitoxin C-terminal seven amino acids, corresponding to the site of a disorder-to-order transition, completely prevents association. These studies combine to provide a model for the initiation of the TA interaction and highlight how manipulation of the sequence can impact the antitoxin disorder-to-order transition, weakening the affinity and resulting in increased antitoxin susceptibility to degradation.


Assuntos
Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Protease La/metabolismo , Pseudomonas aeruginosa/metabolismo , Proteínas de Bactérias/química , Toxinas Bacterianas/química , Cristalografia por Raios X , Escherichia coli/química , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/química , Humanos , Cinética , Protease La/química , Ligação Proteica , Mapas de Interação de Proteínas , Proteólise , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...