Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38846578

RESUMO

Peri-implantitis is a complex infectious disease that manifests as progressive loss of alveolar bone around the dental implants and hyper-inflammation associated with microbial dysbiosis. Using antibiotics in treating peri-implantitis is controversial because of antibiotic resistance threats, the non-selective suppression of pathogens and commensals within the microbial community, and potentially serious systemic sequelae. Therefore, conventional treatment for peri-implantitis comprises mechanical debridement by nonsurgical or surgical approaches with adjunct local microbicidal agents. Consequently, current treatment options may not prevent relapses, as the pathogens either remain unaffected or quickly re-emerge after treatment. Successful mitigation of disease progression in peri-implantitis requires a specific mode of treatment capable of targeting keystone pathogens and restoring bacterial community balance toward commensal species. Antimicrobial peptides (AMPs) hold promise as alternative therapeutics through their bacterial specificity and targeted inhibitory activity. However, peptide sequence space exhibits complex relationships such as sparse vector encoding of sequences, including combinatorial and discrete functions describing peptide antimicrobial activity. In this paper, we generated a transparent Machine Learning (ML) model that identifies sequence-function relationships based on rough set theory using simple summaries of the hydropathic features of AMPs. Comparing the hydropathic features of peptides according to their differential activity for different classes of bacteria empowered predictability of antimicrobial targeting. Enriching the sequence diversity by a genetic algorithm, we generated numerous candidate AMPs designed for selectively targeting pathogens and predicted their activity using classifying rough sets. Empirical growth inhibition data is iteratively fed back into our ML training to generate new peptides, resulting in increasingly more rigorous rules for which peptides match targeted inhibition levels for specific bacterial strains. The subsequent top scoring candidates were empirically tested for their inhibition against keystone and accessory peri-implantitis pathogens as well as an oral commensal bacterium. A novel peptide, VL-13, was confirmed to be selectively active against a keystone pathogen. Considering the continually increasing number of oral implants placed each year and the complexity of the disease progression, prevalence of peri-implant diseases continues to rise. Our approach offers transparent ML-enabled paths towards developing antimicrobial peptide-based therapies targeting the changes in the microbial communities that can beneficially impact disease progression.

2.
Dev Dyn ; 252(10): 1292-1302, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37191055

RESUMO

BACKGROUND: The precise formation of mineralized dental tissues such as enamel and/or dentin require tight transcriptional control of the secretion of matrix proteins. Here, we have investigated the transcriptional regulation of the second most prominent enamel matrix protein, enamelin, and its regulation through the major odontogenic transcription factor, MSX2. RESULTS: Using in vitro and in vivo approaches, we identified that (a) Enam expression is reduced in the Msx2 mouse mutant pre-secretory and secretory ameloblasts, (b) Enam is an early response gene whose expression is under the control of Msx2, (c) Msx2 binds to Enam promoter in vitro, suggesting that enam is a direct target for Msx2 and that (d) Msx2 alone represses Enam gene expression. CONCLUSIONS: Collectively, these results illustrate that Enam gene expression is controlled by Msx2 in a spatio-temporal manner. They also suggest that Msx2 may interact with other transcription factors to control spatial and temporal expression of Enam and hence amelogenesis and enamel biomineralization.


Assuntos
Odontogênese , Fatores de Transcrição , Animais , Camundongos , Ameloblastos/metabolismo , Regulação da Expressão Gênica , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo
3.
Int J Mol Sci ; 24(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37047325

RESUMO

Overcoming the short lifespan of current dental adhesives remains a significant clinical need. Adhesives rely on formation of the hybrid layer to adhere to dentin and penetrate within collagen fibrils. However, the ability of adhesives to achieve complete enclosure of demineralized collagen fibrils is recognized as currently unattainable. We developed a peptide-based approach enabling collagen intrafibrillar mineralization and tested our hypothesis on a type-I collagen-based platform. Peptide design incorporated collagen-binding and remineralization-mediating properties using the domain structure conservation approach. The structural changes from representative members of different peptide clusters were generated for each functional domain. Common signatures associated with secondary structure features and the related changes in the functional domain were investigated by attenuated total reflectance Fourier-transform infrared (ATR-FTIR) and circular dichroism (CD) spectroscopy, respectively. Assembly and remineralization properties of the peptides on the collagen platforms were studied using atomic force microscopy (AFM). Mechanical properties of the collagen fibrils remineralized by the peptide assemblies was studied using PeakForce-Quantitative Nanomechanics (PF-QNM)-AFM. The engineered peptide was demonstrated to offer a promising route for collagen intrafibrillar remineralization. This approach offers a collagen platform to develop multifunctional strategies that combine different bioactive peptides, polymerizable peptide monomers, and adhesive formulations as steps towards improving the long-term prospects of composite resins.


Assuntos
Biomimética , Colágeno , Microscopia Eletrônica de Transmissão , Colágeno/química , Colágeno Tipo I/análise , Peptídeos/análise , Dentina/química
4.
Acta Biomater ; 164: 377-386, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37040812

RESUMO

Various peptide amphiphile (PA) molecules have been developed to promote bone regeneration. Previously we discovered that a peptide amphiphile with a palmitic acid tail (C16) attenuates the signaling threshold of leucine-rich amelogenin peptide (LRAP)-mediated Wnt activation by increasing membrane lipid raft mobility. In the current study, we found that treatment of murine ST2 cells with an inhibitor (Nystatin) or Caveolin-1-specific siRNA abolishes the effect of C16 PA, indicating that Caveolin-mediated endocytosis is required. To determine whether hydrophobicity of the PA tail plays a role in its signaling effect, we modified the length of the tail (C12, C16 and C22) or composition (cholesterol). While shortening the tail (C12) decreased the signaling effect, lengthening the tail (C22) had no prominent effect. On the other hand, the cholesterol PA displayed a similar function as the C16 PA at the same concentration of 0.001% w/v. Interestingly, a higher concentration of C16 PA (0.005%) is cytotoxic while cholesterol PA at the higher concentration (0.005%) is well-tolerated by cells. Use of the cholesterol PA at 0.005% enabled a further reduction of the signaling threshold of LRAP to 0.20 nM, compared to 0.25 nM at 0.001%. Caveolin-mediated endocytosis is also required for cholesterol PA, as evidenced by Caveolin-1 siRNA knockdown experiments. We further demonstrated that the noted effects of cholesterol PA are also observed in human bone marrow mesenchymal stem cells (BMMSCs). Taken together, these results indicate that the cholesterol PA modulates lipid raft/caveolar dynamics, thereby increasing receptor sensitivity for activation of canonical Wnt signaling. STATEMENT OF SIGNIFICANCE: Cell signaling involves not only the binding of growth factors (or other cytokines) and cognate receptors, but also their clustering on the cell membrane. However, little or no work has been directed thus far toward investigating how biomaterials can serve to enhance growth factor or peptide signaling by increasing diffusion of cell surface receptors within membrane lipid rafts. Therefore, a better understanding of the cellular and molecular mechanism(s) operating at the material-cell membrane interface during cell signaling has the potential to change the paradigm in designing future biomaterials and regenerative medicine therapeutics. In this study, we designed a peptide amphiphile (PA) with a cholesterol tail to enhance canonical Wnt signaling by modulating lipid raft/caveolar dynamics.


Assuntos
Caveolina 1 , Microdomínios da Membrana , Camundongos , Animais , Humanos , Caveolina 1/metabolismo , Microdomínios da Membrana/metabolismo , Peptídeos/farmacologia , Peptídeos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Lipídeos de Membrana/metabolismo , RNA Interferente Pequeno/metabolismo , Colesterol
5.
Polymers (Basel) ; 14(7)2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35406242

RESUMO

Caries is the most ubiquitous infectious disease of mankind, and early childhood caries (ECC) is the most prevalent chronic disease in children worldwide, with the resulting destruction of the teeth recognized as a global health crisis. Recent the United States Food and Drug Administration (FDA) approval for the use of silver diamine fluoride (SDF) in dentistry offers a safe, accessible, and inexpensive approach to arrest caries progression in children with ECC. However, discoloration, i.e., black staining, of demineralized or cavitated surfaces treated with SDF has limited its widespread use. Targeting SDF-treated tooth surfaces, we developed a biohybrid calcium phosphate nanocomposite interface building upon the self-assembly of synthetic biomimetic peptides. Here, an engineered bifunctional peptide composed of a silver binding peptide (AgBP) is covalently joined to an amelogenin derived peptide (ADP). The AgBP provides anchoring to the SDF-treated tooth tissue, while the ADP promotes rapid formation of a calcium phosphate isomorph nanocomposite mimicking the biomineralization function of the amelogenin protein. Our results demonstrate that the bifunctional peptide was effective in remineralizing the biomineral destroyed by caries on the SDF-treated tooth tissues. The proposed engineered peptide approach offers a biomimetic path for remineralization of the SDF-treated tissues producing a calcium phosphate nanocomposite interface competent to be restored using commonly available adhesive dental composites.

6.
JOM (1989) ; 73(6): 1696-1704, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34456537

RESUMO

Amelogenin is the most abundant matrix protein guiding hydroxyapatite formation in enamel, the durable bioceramic tissue that covers vertebrate teeth. Here, we sought to refine structure-function for an amelogenin domain based on in vitro data showing a 42 amino acid amelogenin-derived peptide (ADP7) mimicked formation of hydroxyapatite similar to that observed for the full-length mouse 180 amino acid protein. In mice, we used CRISPR-Cas9 to express only ADP7 by the native amelogenin promoter. Analysis revealed ADP7 messenger RNA expression in developing mouse teeth with the formation of a thin layer of enamel. In vivo, ADP7 peptide partially replaced the function of the full-length amelogenin protein and its several protein isoforms. Protein structure-function relationships identified through in vitro assays can be deployed in whole model animals using CRISPR-Cas9 to validate function of a minimal protein domain to be translated for clinical use as an enamel biomimetic.

7.
Front Physiol ; 11: 582610, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33192593

RESUMO

BACKGROUND: Ameloblasts are epithelially derived cells responsible for enamel formation through a process known as amelogenesis. Amongst the several transcription factors that are expressed during amelogenesis, both Msx2 and Sp6 transcription factors play important role. Msx2 and Sp6 mouse mutants, exhibit similar amelogenesis defects, namely enamel hypoplasia, while humans with amelogenesis imperfecta (AI) carry mutations in the human homologues of MSX2 or SP6 genes. These across species similarities in function indicate that these two transcription factors may reside in the same developmental pathway. In this paper, we test whether they work in a coordinated manner to exert their effect during amelogenesis. METHODS: Two different dental epithelial cell lines, the mouse LS8 and the rat G5 were used for either overexpression or silencing of Msx2 or Sp6 or both. Msx2 mutant mouse embryos or pups were used for in vivo studies. In situ hybridization, semi-quantitative and quantitative real time PCR were employed to study gene expression pattern. MatInspector was used to identify several potential putative Msx2 binding sites upstream of the murine Sp6 promoter region. Chromatin Immunoprecipitation (chIP) was used to confirm the binding of Msx2 to Sp6 promoter at the putative sites. RESULTS: Using the above methods we identified that (i) Msx2 and Sp6 exhibit overlapping expression in secretory ameloblasts, (ii) Sp6 expression is reduced in the Msx2 mouse mutant secretoty ameloblasts, and (iii) that Msx2, like Sp6 inhibits follistatin expression. Specifically, our loss-of function studies by silencing Msx2 and/or Sp6 in mouse dental epithelial (LS8) cells showed significant downregulation of Sp6 but upregulation of Fst expression. Transient transfection of Msx2 overexpression plasmid, up-regulated Sp6 and downregulated Fst expression. Additionally, using MatInspector, we identified several potential putative Msx2 binding sites, 3.5 kb upstream of the murine Sp6 promoter region. By chIP, we confirmed the binding of Msx2 to Sp6 promoter at these sites, thus suggesting that Sp6 is a direct target of Msx2. CONCLUSION: Collectively, these results show that Sp6 and Msx2 work in a concerted manner to form part of a network of transcription factors that operate during later stages of tooth development controlling ameloblast life cycle and amelogenesis.

8.
ACS Biomater Sci Eng ; 6(5): 2682-2695, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32467858

RESUMO

The integration of molecular and cell biology with materials science has led to strategies to improve the interface between dental implants with the surrounding soft and hard tissues in order to replace missing teeth and restore mastication. More than 3 million implants have been placed in the US alone and this number is rising by 500,000/year. Peri-implantitis, an inflammatory response to oral pathogens growing on the implant surface threatens to reduce service life leading to eventual implant failure, and such an outcome will have adverse impact on public health and create significant health care costs. Here we report a predictive approach to peptide design, which enabled us to engineer a bifunctional peptide to combat bacterial colonization and biofilm formation, reducing the adverse host inflammatory immune response that destroys the tissue surrounding implants and shortens their lifespans. This bifunctional peptide contains a titanium-binding domain that recognizes and binds with high affinity to titanium implant surfaces, fused through a rigid spacer domain with an antimicrobial domain. By varying the antimicrobial peptide domain, we were able to predict the properties of the resulting bifunctional peptides in their entirety by analyzing the sequence-structure-function relationship. These bifunctional peptides achieve: 1) nearly 100% surface coverage within minutes, a timeframe suitable for their clinical application to existing implants; 2) nearly 100% binding to a titanium surface even in the presence of contaminating serum protein; 3) durability to brushing with a commercially available electric toothbrush; and 4) retention of antimicrobial activity on the implant surface following bacterial challenge. A bifunctional peptide film can be applied to both new implants and/or repeatedly applied to previously placed implants to control bacterial colonization mitigating peri-implant disease that threatens dental implant longevity.


Assuntos
Anti-Infecciosos , Peri-Implantite , Antibacterianos , Anti-Infecciosos/farmacologia , Humanos , Peptídeos/farmacologia , Peri-Implantite/prevenção & controle , Titânio
9.
JOM (1989) ; 71(4): 1271-1280, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31178649

RESUMO

The rising use of titanium dental implants has increased the prevalence of peri-implant disease that shortens their useful life. A growing view of peri-implant disease suggests that plaque accumulation and microbiome dysbiogenesis trigger a host immune inflammatory response that destroys soft and hard tissues supporting the implant. The incidence of peri-implant disease is difficult to estimate, but with over 3 million implants placed in the USA alone, and the market growing by 500,000 implants/year, such extensive use demands additional interceptive approaches. We report a water-based, nonsur-gical approach to address peri-implant disease using a bifunctional peptide film, which can be applied during initial implant placement and later reapplied to existing implants to reduce bacterial growth. Bifunctional peptides are based upon a titanium binding peptide (TiBP) optimally linked by a spacer peptide to an antimicrobial peptide (AMP). We show herein that dental implant surfaces covered with a bifunctional peptide film kill bacteria. Further, using a simple protocol for cleaning implant surfaces fouled by bacteria, the surface can be effectively recoated with TiBP-AMP to regain an antimicrobial state. Fouling, cleansing, and rebinding was confirmed for up to four cycles with minimal loss of binding efficacy. After fouling, rebinding with a water-based peptide film extends control over the oral microbiome composition, providing a novel nonsurgical treatment for dental implants.

10.
Gene ; 688: 193-203, 2019 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-30529249

RESUMO

There is little evidence for the involvement of microRNAs (miRNAs) in the regulation of circadian rhythms during enamel development. Few studies have used ameloblast-like cell line LS8 to study the circadian rhythm of gene activities related to enamel formation. However, the transcriptomic analysis of miRNA expression in LS8 cells has not been established yet. In this study, we analyze the oscillations of miRNAs in LS8 cells during one-day cycle of 24 h by next generation deep sequencing. After removal of low quality reads, contaminants, and ligation products, we obtained a high number of clean reads in all 12 samples from four different time points. The length distribution analysis indicated that 77.5% of clean reads were between 21 and 24 nucleotides (nt), of which 35.81% reads exhibited a length of 22 nt. In total, we identified 1471 miRNAs in LS8 cells throughout all four time-points. 1330 (90.41%) miRNAs were identified as known miRNA sequences, whereas 139 (9.59%) were unannotated and classified as novel miRNA sequences. The differential expression analysis showed that 191 known miRNAs exhibited significantly (P-value < 0.01) different levels of expression across three time-points investigated (T6, T12, and T18) compared to T0. Verification of sequencing data using qRT-PCR on six selected miRNAs suggested good correlation between the two methods. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed significant enrichment of predicted target genes of differentially expressed miRNAs. The present study shows that miRNAs are highly expressed in LS8 cells and that a significant number of them oscillate during one-day cycle of 24 h. This is the first transcriptomic analysis of miRNAs in ameloblast-like cell line LS8 that can be potentially used to further characterize the epigenetic regulation of miRNAs during enamel formation.


Assuntos
Esmalte Dentário/metabolismo , MicroRNAs/genética , Transcriptoma/genética , Animais , Linhagem Celular , Epigênese Genética/genética , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Genoma/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Camundongos , RNA Mensageiro/genética , Análise de Sequência de RNA
11.
Arch Oral Biol ; 83: 7-12, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28689018

RESUMO

OBJECTIVE: The aim of the present study was to select the optimal concentration of TiF4 solution to facilitate the remineralization of early dentine caries lesions. DESIGN: Sixty human dentine specimens were cut and randomly divided into 6 groups (1%, 2%, 3%, 4% TiF4 groups, 2.712% NaF group and distilled deionized water (DDW) control group). Artificial dentine caries-like lesions were created. After being subjected to fluoride treatment and immersed in remineralizing solution for 2weeks, the specimens were observed by microCT, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Data were analysed using linear regression analysis (P<0.05). RESULTS: The lesion depths of the specimens treated by 2% TiF4 solution were statistically less than those of the other groups. Further, the greyscale values of these lesion areas were greater. The 3% and 4% TiF4 solutions caused further lesion demineralization. The 2.712% NaF solution seemed to be detrimental to remineralization during the experimental time, as the subsurface area remained hypomineralized with a thick precipitation layer on the surface. CONCLUSIONS: The 2% TiF4 solution demonstrated better remineralizing potency than did the other treatments.


Assuntos
Cariostáticos/administração & dosagem , Dentina/efeitos dos fármacos , Dentina/patologia , Fluoretos/administração & dosagem , Titânio/administração & dosagem , Remineralização Dentária/métodos , Humanos , Técnicas In Vitro , Microscopia Eletrônica de Varredura , Espectroscopia Fotoeletrônica , Fluoreto de Sódio/administração & dosagem , Microtomografia por Raio-X
12.
Sci Rep ; 7: 44118, 2017 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-28287144

RESUMO

Amelogenesis imperfecta (AI) is group of inherited disorders resulting in enamel pathologies. The involvement of epigenetic regulation in the pathogenesis of AI is yet to be clarified due to a lack of knowledge about amelogenesis. Our previous genome-wide microRNA and mRNA transcriptome analyses suggest a key role for miR-153 in endosome/lysosome-related pathways during amelogenesis. Here we show that miR-153 is significantly downregulated in maturation ameloblasts compared with secretory ameloblasts. Within ameloblast-like cells, upregulation of miR-153 results in the downregulation of its predicted targets including Cltc, Lamp1, Clcn4 and Slc4a4, and a number of miRNAs implicated in endocytotic pathways. Luciferase reporter assays confirmed the predicted interactions between miR-153 and the 3'-UTRs of Cltc, Lamp1 (in a prior study), Clcn4 and Slc4a4. In an enamel protein intake assay, enamel cells transfected with miR-153 show a decreased ability to endocytose enamel proteins. Finally, microinjection of miR-153 in the region of mouse first mandibular molar at postnatal day 8 (PN8) induced AI-like pathologies when the enamel development reached maturity (PN12). In conclusion, miR-153 regulates maturation-stage amelogenesis by targeting key genes involved in the endocytotic and endosomal/lysosomal pathways, and disruption of miR-153 expression is a potential candidate etiologic factor contributing to the occurrence of AI.


Assuntos
Amelogênese Imperfeita/metabolismo , Amelogênese , Esmalte Dentário/crescimento & desenvolvimento , Esmalte Dentário/metabolismo , Endocitose , MicroRNAs/metabolismo , Ameloblastos/metabolismo , Amelogênese Imperfeita/etiologia , Animais , Células Cultivadas , Esmalte Dentário/patologia , Proteínas do Esmalte Dentário/metabolismo , Endossomos/metabolismo , Lisossomos/metabolismo , Masculino , Camundongos Endogâmicos BALB C
13.
Acta Odontol Scand ; 74(7): 539-549, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27624793

RESUMO

OBJECTIVE: To investigate the possible biological mechanism of dental fluorosis at a molecular level. MATERIAL AND METHODS: Cultured LS8 were incubated with serum-free medium containing selected concentrations of NaF (0 ∼ 2 mM) for either 24 or 48 h. Subcellular microanatomy was characterized using TEM; meanwhile, selected biomolecules were analysed using various biochemistry techniques. Transient transfection was used to modulate a molecular pathway for apoptosis. RESULTS: Apoptosis of LS8 was induced by NaF treatment that showed both time and concentration dependency. The activity of caspase-3, -8, -9 was found to be increased with NaF in a dose-dependent manner. Western blot revealed that the protein expression of p-ERK and p-JNK were decreased, while the expression of p-P38 was increased. Inhibition of the p-ERK and p-JNK pathways resulted in a similar decrease for caspase-3. CONCLUSION: During NaF-induced apoptosis of LS8, p-ERK and p-JNK were closely associated with induction of apoptosis, which might be a mechanism of dental fluorosis.


Assuntos
Ameloblastos/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Cariostáticos/efeitos adversos , Fluorose Dentária/etiologia , Proteínas Quinases Ativadas por Mitógeno/efeitos dos fármacos , Fluoreto de Sódio/efeitos adversos , Ameloblastos/ultraestrutura , Animais , Caspase 3/efeitos dos fármacos , Caspase 8 , Caspase 9 , Técnicas de Cultura de Células , Linhagem Celular , Relação Dose-Resposta a Droga , MAP Quinases Reguladas por Sinal Extracelular/efeitos dos fármacos , Fluorose Dentária/enzimologia , Inativação Gênica , Proteínas Quinases JNK Ativadas por Mitógeno/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , RNA Interferente Pequeno/genética , Transfecção , Proteínas Quinases p38 Ativadas por Mitógeno/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/genética
14.
PLoS One ; 11(5): e0154884, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27144394

RESUMO

Recent studies have demonstrated that ectodysplasin-A (EDA) mutations are associated with non-syndromic tooth agenesis. Indeed, we were the first to report three novel EDA mutations (A259E, R289C and R334H) in sporadic non-syndromic tooth agenesis. We studied the mechanism linking EDA mutations and non-syndromic tooth agenesis in human embryonic kidney 293T cells and mouse ameloblast-derived LS8 cells transfected with mutant isoforms of EDA. The receptor binding capability of the mutant EDA1 protein was impaired in comparison to wild-type EDA1. Although the non-syndromic tooth agenesis-causing EDA1 mutants possessed residual binding capability, the transcriptional activation of the receptor's downstream target, nuclear factor κB (NF-κB), was compromised. We also analyzed the changes of selected genes in other signaling pathways, such as WNT and BMP, after EDA mutation. We found that non-syndromic tooth agenesis-causing EDA1 mutant proteins upregulate BMP4 (bone morphogenetic protein 4) mRNA expression and downregulate WNT10A and WNT10B (wingless-type MMTV integration site family member 10A and 10B) mRNA expression. Our results indicated that non-syndromic tooth agenesis causing EDA mutations (A259E, R289C and R334H) were loss-of-function, and suggested that EDA may regulate the expression of WNT10A, WNT10B and BMP4 via NF-κB during tooth development. The results from our study may help to understand the molecular mechanism linking specific EDA mutations with non-syndromic tooth agenesis.


Assuntos
Ectodisplasinas/genética , Mutação/genética , Odontogênese/genética , Dente/crescimento & desenvolvimento , Animais , Proteína Morfogenética Óssea 4/genética , Linhagem Celular , Células HEK293 , Humanos , Camundongos , NF-kappa B/genética , Ativação Transcricional/genética , Proteínas Wnt/genética
15.
Nano Lett ; 16(5): 3042-50, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27070195

RESUMO

The nanostructures of self-assembling biomaterials have been previously designed to tune the release of growth factors in order to optimize biological repair and regeneration. We report here on the discovery that weakly cohesive peptide nanostructures in terms of intermolecular hydrogen bonding, when combined with low concentrations of osteogenic growth factor, enhance both BMP-2 and Wnt mediated signaling in myoblasts and bone marrow stromal cells, respectively. Conversely, analogous nanostructures with enhanced levels of internal hydrogen bonding and cohesion lead to an overall reduction in BMP-2 signaling. We propose that the mechanism for enhanced growth factor signaling by the nanostructures is related to their ability to increase diffusion within membrane lipid rafts. The phenomenon reported here could lead to new nanomedicine strategies to mediate growth factor signaling for translational targets.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Microdomínios da Membrana/efeitos dos fármacos , Nanofibras/química , Peptídeos/química , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Humanos , Ligação de Hidrogênio , Cinética , Microdomínios da Membrana/fisiologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Mioblastos/citologia , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Osteogênese , Tamanho da Partícula , Conformação Proteica em Folha beta , Transdução de Sinais , Propriedades de Superfície
16.
J Endod ; 42(3): 402-12, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26709200

RESUMO

INTRODUCTION: Recombinant DNA-produced amelogenin protein was compared with calcium hydroxide in a study of immature apex closure conducted in 24 young mongrel dogs. METHODS: Root canals of maxillary and mandibular right premolars (n = 240) were instrumented and left open for 14 days. Canals were cleansed, irrigated, and split equally for treatment with recombinant mouse amelogenin (n = 120) or calcium hydroxide (n = 120). RESULTS: After 1, 3, and 6 months, the animals were sacrificed and the treated teeth recovered for histologic assessment and immunodetection of protein markers associated with odontogenic cells. After 1 month, amelogenin-treated canals revealed calcified tissue formed at the apical foramen and a pulp chamber containing soft connective tissue and hard tissue; amelogenin-treated canals assessed after 3- and 6-month intervals further included apical tissue functionally attached to bone by a periodontal ligament. In contrast, calcified apical tissue was poorly formed in the calcium hydroxide group, and soft connective tissue within the pulp chamber was not observed. CONCLUSIONS: The findings from this experimental strategy suggest recombinant amelogenin protein can signal cells to enhance apex formation in nonvital immature teeth and promote soft connective tissue regeneration.


Assuntos
Amelogenina/farmacologia , Polpa Dentária/efeitos dos fármacos , Polpa Dentária/patologia , Regeneração/efeitos dos fármacos , Ápice Dentário/efeitos dos fármacos , Ápice Dentário/patologia , Animais , Apexificação/métodos , Hidróxido de Cálcio/farmacologia , Polpa Dentária/crescimento & desenvolvimento , Cavidade Pulpar/efeitos dos fármacos , Cavidade Pulpar/crescimento & desenvolvimento , Cavidade Pulpar/patologia , Cães , Camundongos , Modelos Animais , Odontoblastos/efeitos dos fármacos , Proteínas Recombinantes/farmacologia , Materiais Restauradores do Canal Radicular/farmacologia , Ápice Dentário/crescimento & desenvolvimento , Dente não Vital/patologia
17.
J Mol Eng Mater ; 4(1)2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28936427

RESUMO

Surgical site infection is a common cause of post-operative morbidity, often leading to implant loosening, ultimately requiring revision surgery, increased costs and worse surgical outcomes. Since implant failure starts at the implant surface, creating and controlling the bio-material interface will play a critical role in reducing infection while improving host cell-to-implant interaction. Here, we engineered a biomimetic interface based upon a chimeric peptide that incorporates a titanium binding peptide (TiBP) with an antimicrobial peptide (AMP) into a single molecule to direct binding to the implant surface and deliver an antimicrobial activity against S. mutans and S. epidermidis, two bacteria which are linked with clinical implant infections. To optimize antimicrobial activity, we investigated the design of the spacer domain separating the two functional domains of the chimeric peptide. Lengthening and changing the amino acid composition of the spacer resulted in an improvement of minimum inhibitory concentration by a three-fold against S. mutans. Surfaces coated with the chimeric peptide reduced dramatically the number of bacteria, with up to a nine-fold reduction for S. mutans and a 48-fold reduction for S. epidermidis. Ab initio predictions of antimicrobial activity based on structural features were confirmed. Host cell attachment and viability at the biomimetic interface were also improved compared to the untreated implant surface. Biomimetic interfaces formed with this chimeric peptide offer interminable potential by coupling antimicrobial and improved host cell responses to implantable titanium materials, and this peptide based approach can be extended to various biomaterials surfaces.

18.
Surf Innov ; 4(3): 121-132, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29057075

RESUMO

Silver nanoparticles (AgNP) are promising candidates for fighting drug-resistant infections because of their intrinsic antimicrobial effect. The design of high-yield antimicrobial molecules may inadvertently cause variation in host cells' biological responses. While many factors affect AgNPs' efficacy, their surface is exposed to the biological environment and thus plays a critical role in both the preservation of antimicrobial efficacy against pathogens and the modulation of host cells cytotoxicity. This work investigated an engineered biomimetic interface approach to controlling AgNP surface properties to provide them a competitive advantage in a biological environment. Here, a fusion protein featuring a silver-binding peptide (AgBP) domain was engineered to enable self-assembly and track assembly by a green fluorescent protein (GFP) reporter. Following AgNP functionalisation with GFP-AgBP, their antimicrobial and cytotoxic properties were evaluated. GFP-AgBP binding affinity to AgNPs was evaluated using localized surface plasmon resonance sensing. The GFP-AgBP biomimetic interface on AgNPs' surfaces provided sustained antibacterial efficacy at low concentrations based on bacterial growth inhibition assays. Viability and cytotoxicity measurements in fibroblast cells exposed to GFP-AgBP protein-functionalised AgNPs showed significant improvement compared to controls. Biointerface engineering offers promise towards tailoring AgNP antimicrobial efficacy while addressing safety concerns to maintain optimum cellular interactions.

19.
J Mech Phys Solids ; 87: 177-226, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31178602

RESUMO

We argue in favor of representing living cells as automata and review demonstrations that autonomous cells can form patterns by responding to local variations in the strain fields that arise from their individual or collective motions. An autonomous cell's response to strain stimuli is assumed to be effected by internally-generated, internally-powered forces, which generally move the cell in directions other than those implied by external energy gradients. Evidence of cells acting as strain-cued automata have been inferred from patterns observed in nature and from experiments conducted in vitro. Simulations that mimic particular cases of pattern forming share the idealization that cells are assumed to pass information among themselves solely via mechanical boundary conditions, i.e., the tractions and displacements present at their membranes. This assumption opens three mechanisms for pattern formation in large cell populations: wavelike behavior, kinematic feedback in cell motility that can lead to sliding and rotational patterns, and directed migration during invasions. Wavelike behavior among ameloblast cells during amelogenesis (the formation of dental enamel) has been inferred from enamel microstructure, while strain waves in populations of epithelial cells have been observed in vitro. One hypothesized kinematic feedback mechanism, "enhanced shear motility", accounts successfully for the spontaneous formation of layered patterns during amelogenesis in the mouse incisor. Directed migration is exemplified by a theory of invader cells that sense and respond to the strains they themselves create in the host population as they invade it: analysis shows that the strain fields contain positional information that could aid the formation of cell network structures, stabilizing the slender geometry of branches and helping govern the frequency of branch bifurcation and branch coalescence (the formation of closed networks). In simulations of pattern formation in homogeneous populations and network formation by invaders, morphological outcomes are governed by the ratio of the rates of two competing time dependent processes, one a migration velocity and the other a relaxation velocity related to the propagation of strain information. Relaxation velocities are approximately constant for different species and organs, whereas cell migration rates vary by three orders of magnitude. We conjecture that developmental processes use rapid cell migration to achieve certain outcomes, and slow migration to achieve others. We infer from analysis of host relaxation during network formation that a transition exists in the mechanical response of a host cell from animate to inanimate behavior when its strain changes at a rate that exceeds 10-4-10-3s-1. The transition has previously been observed in experiments conducted in vitro.

20.
PLoS One ; 10(12): e0144703, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26671068

RESUMO

The bicarbonate transport activities of Slc26a1, Slc26a6 and Slc26a7 are essential to physiological processes in multiple organs. Although mutations of Slc26a1, Slc26a6 and Slc26a7 have not been linked to any human diseases, disruption of Slc26a1, Slc26a6 or Slc26a7 expression in animals causes severe dysregulation of acid-base balance and disorder of anion homeostasis. Amelogenesis, especially the enamel formation during maturation stage, requires complex pH regulation mechanisms based on ion transport. The disruption of stage-specific ion transporters frequently results in enamel pathosis in animals. Here we present evidence that Slc26a1, Slc26a6 and Slc26a7 are highly expressed in rodent incisor ameloblasts during maturation-stage tooth development. In maturation-stage ameloblasts, Slc26a1, Slc26a6 and Slc26a7 show a similar cellular distribution as the cystic fibrosis transmembrane conductance regulator (Cftr) to the apical region of cytoplasmic membrane, and the distribution of Slc26a7 is also seen in the cytoplasmic/subapical region, presumably on the lysosomal membrane. We have also examined Slc26a1 and Slc26a7 null mice, and although no overt abnormal enamel phenotypes were observed in Slc26a1-/- or Slc26a7-/- animals, absence of Slc26a1 or Slc26a7 results in up-regulation of Cftr, Ca2, Slc4a4, Slc4a9 and Slc26a9, all of which are involved in pH homeostasis, indicating that this might be a compensatory mechanism used by ameloblasts cells in the absence of Slc26 genes. Together, our data show that Slc26a1, Slc26a6 and Slc26a7 are novel participants in the extracellular transport of bicarbonate during enamel maturation, and that their functional roles may be achieved by forming interaction units with Cftr.


Assuntos
Proteínas de Transporte de Ânions/genética , Esmalte Dentário/crescimento & desenvolvimento , Família Multigênica , Ameloblastos/metabolismo , Amelogênese/genética , Animais , Proteínas de Transporte de Ânions/metabolismo , Western Blotting , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Esmalte Dentário/metabolismo , Esmalte Dentário/ultraestrutura , Dentina/metabolismo , Regulação para Baixo/genética , Perfilação da Expressão Gênica , Concentração de Íons de Hidrogênio , Mandíbula/diagnóstico por imagem , Camundongos , Fenótipo , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Espectrometria por Raios X , Regulação para Cima/genética , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...