Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37873223

RESUMO

Microglia, the immune cells of the brain, are increasingly implicated in neurodegenerative disorders through genetic studies. However, how genetic risk factors for these diseases are related to microglial gene expression, microglial function, and ultimately disease, is still largely unknown. Microglia change rapidly in response to alterations in their cellular environment, which is regulated through changes in transcriptional programs, which are as yet poorly understood. Here, we compared the effects of a set of inflammatory and restorative stimuli (lipopolysaccharide, interferon-gamma, resiquimod, tumor necrosis factor-alpha, adenosine triphosphate, dexamethasone, and interleukin-4) on human microglial cells from 67 different donors (N = 398 samples) at the gene and transcript level. We show that microglia from different anatomical brain regions show distinct responses to inflammatory stimuli. We observed a greater overlap between human stimulated microglia and human monocytes than with mouse microglia. We define specific microglial signatures across conditions which are highly relevant for a wide range of biological functions and complex human diseases. Finally, we used our stimulation signatures to interpret associations from Alzheimer's disease (AD) genetic studies and microglia by integrating our inflammatory gene expression profiles with common genetic variants to map cis -expression QTLs (eQTLs). Together, we provide the most comprehensive transcriptomic database of the human microglia responsome. Highlights: RNA-sequencing of 398 human microglial samples exposed to six different triggers.Microglia from different anatomical regions show distinct stimulation responses.Responses in human microglia show a greater overlap with human monocytes than murine microglia.Mapping of response Quantitative Trait Loci identifies interactions between genotype and effect of stimulation on gene expression.Our atlas provides a reference map for interpreting microglia signatures in health and disease.

2.
Nat Genet ; 54(1): 4-17, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34992268

RESUMO

Microglia have emerged as important players in brain aging and pathology. To understand how genetic risk for neurological and psychiatric disorders is related to microglial function, large transcriptome studies are essential. Here we describe the transcriptome analysis of 255 primary human microglial samples isolated at autopsy from multiple brain regions of 100 individuals. We performed systematic analyses to investigate various aspects of microglial heterogeneities, including brain region and aging. We mapped expression and splicing quantitative trait loci and showed that many neurological disease susceptibility loci are mediated through gene expression or splicing in microglia. Fine-mapping of these loci nominated candidate causal variants that are within microglia-specific enhancers, finding associations with microglial expression of USP6NL for Alzheimer's disease and P2RY12 for Parkinson's disease. We have built the most comprehensive catalog to date of genetic effects on the microglial transcriptome and propose candidate functional variants in neurological and psychiatric disorders.


Assuntos
Envelhecimento/metabolismo , Encéfalo/metabolismo , Microglia/metabolismo , Envelhecimento/genética , Doença de Alzheimer/metabolismo , Atlas como Assunto , Conjuntos de Dados como Assunto , Feminino , Perfilação da Expressão Gênica , Heterogeneidade Genética , Predisposição Genética para Doença , Humanos , Masculino , Doença de Parkinson/metabolismo , Locos de Características Quantitativas , Splicing de RNA , Transcriptoma
3.
Biol Psychiatry ; 91(6): 572-581, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35027166

RESUMO

BACKGROUND: Transcriptome studies have revealed age-, disease-, and region-associated microglial phenotypes reflecting changes in microglial function during development, aging, central nervous system homeostasis, and pathology. The molecular mechanisms that contribute to these transcriptomic changes are largely unknown. The aim of this study was to characterize the DNA methylation landscape of human microglia and the factors that contribute to variations in the microglia methylome. We hypothesized that both age and brain region would have a large impact on DNA methylation in microglia. METHODS: Microglia from postmortem brain tissue of four different brain regions of 22 donors, encompassing 1 patient with schizophrenia, 13 patients with mood disorder pathology, and 8 control subjects, were isolated and assayed using a genome-wide methylation array. RESULTS: We found that human microglial cells have a methylation profile distinct from bulk brain tissue and neurons, and age explained a considerable part of the variation. Additionally, we showed that interindividual factors had a much larger effect on the methylation landscape of microglia than brain region, which was also seen at the transcriptome level. In our exploratory analysis, we found various differentially methylated regions that were related to disease status (mood disorder vs. control). This included differentially methylated regions that are linked to gene expression in microglia, as well as to myeloid cell function or neuropsychiatric disorders. CONCLUSIONS: Although based on relatively small samples, these findings suggest that the methylation profile of microglia is responsive to interindividual variations and thereby plays an important role in the heterogeneity of microglia observed at the transcriptome level.


Assuntos
Epigenoma , Microglia , Encéfalo/metabolismo , Metilação de DNA , Humanos , Microglia/metabolismo , Transtornos do Humor/genética , Transcriptoma
4.
Glia ; 69(5): 1251-1267, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33410555

RESUMO

Microglia, the immune cells of the brain, are important for neurodevelopment and have been hypothesized to play a role in the pathogenesis of schizophrenia (SCZ). Although previous postmortem studies pointed toward presence of microglial activation, this view has been challenged by more recent hypothesis-driven and hypothesis-free analyses. The aim of the present study is to further understand the observed microglial changes in SCZ. We first performed a detailed meta-analysis on studies that analyzed microglial cell density, microglial morphology, and expression of microglial-specific markers. We then further explored findings from the temporal cortex by performing immunostainings and qPCRs on an additional dataset. A random effect meta-analysis showed that the density of microglial cells was unaltered in SCZ (ES: 0.144 95% CI: 0.102 to 0.390, p = .250), and clear changes in microglial morphology were also absent. The expression of several microglial specific genes, such as CX3CR1, CSF1R, IRF8, OLR1, and TMEM119 was decreased in SCZ (ES: -0.417 95% CI: -0.417 to -0.546, p < .0001), consistent with genome-wide transcriptome meta-analysis results. These results indicate a change in microglial phenotype rather than density, which was validated with the use of TMEM119/Iba1 immunostainings on temporal cortex of a separate cohort. Changes in microglial gene expression were overlapping between SCZ and other psychiatric disorders, but largely opposite from changes reported in Alzheimer's disease. This distinct microglial phenotype provides a crucial molecular hallmark for future research into the role of microglia in SCZ and other psychiatric disorders.


Assuntos
Doença de Alzheimer , Esquizofrenia , Biomarcadores , Encéfalo , Perfilação da Expressão Gênica , Humanos , Microglia , Esquizofrenia/genética
5.
Mol Psychiatry ; 26(7): 3336-3349, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33028963

RESUMO

Findings from epidemiological studies, biomarker measurements and animal experiments suggest a role for aberrant immune processes in the pathogenesis of major depressive disorder (MDD). Microglia, the resident immune cells of the brain, are likely to play a key role in these processes. Previous post-mortem studies reported conflicting findings regarding microglial activation and an in-depth profiling of those cells in MDD is lacking. The aim of this study was therefore to characterize the phenotype and function of microglia in MDD. We isolated microglia from post-mortem brain tissue of patients with MDD (n = 13-19) and control donors (n = 12-25). Using flow cytometry and quantitative Polymerase Chain Reaction (qPCR), we measured protein and mRNA levels of a panel of microglial markers across four different brain regions (medial frontal gyrus, superior temporal gyrus, thalamus, and subventricular zone). In MDD cases, we found a significant upregulation of CX3CR1 and TMEM119 mRNA expression and a downregulation of CD163 mRNA expression and CD14 protein expression across the four brain regions. Expression levels of microglial activation markers, such as HLA-DRA, IL6, and IL1ß, as well as the inflammatory responses to lipopolysaccharide and dexamethasone were unchanged. Our findings suggest that microglia enhance homeostatic functions in MDD but are not immune activated.


Assuntos
Transtorno Depressivo Maior , Microglia , Animais , Autopsia , Encéfalo , Humanos , Lipopolissacarídeos
6.
Transl Psychiatry ; 10(1): 310, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32917850

RESUMO

Stress-induced disturbances of brain homeostasis and neuroinflammation have been implicated in the pathophysiology of mood disorders. In major depressive disorder (MDD), elevated levels of proinflammatory cytokines and chemokines can be found in peripheral blood, but very little is known about the changes that occur directly in the brain. Microglia are the primary immune effector cells of the central nervous system and exquisitely sensitive to changes in the brain microenvironment. Here, we performed the first single-cell analysis of microglia from four different post-mortem brain regions (frontal lobe, temporal lobe, thalamus, and subventricular zone) of medicated individuals with MDD compared to controls. We found no evidence for the induction of inflammation-associated molecules, such as CD11b, CD45, CCL2, IL-1ß, IL-6, TNF, MIP-1ß (CCL4), IL-10, and even decreased expression of HLA-DR and CD68 in microglia from MDD cases. In contrast, we detected increased levels of the homeostatic proteins P2Y12 receptor, TMEM119 and CCR5 (CD195) in microglia from all brain regions of individuals with MDD. We also identified enrichment of non-inflammatory CD206hi macrophages in the brains of MDD cases. In sum, our results suggest enhanced homeostatic functions of microglia in MDD.


Assuntos
Transtorno Depressivo Maior , Microglia , Quimiocinas , Citocinas/genética , Homeostase , Humanos , Fenótipo
8.
Schizophr Res ; 215: 167-172, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31699629

RESUMO

Positron emission tomography (PET) with translocator 18 kDa protein (TSPO) radioligands has frequently been used to investigate microglial activation in schizophrenia in vivo. However, the specificity of this marker is increasingly debated. Here we show that TSPO expression is 1) not increased in postmortem brain tissue of schizophrenia patients; 2) not correlated with expression of microglial activation markers; 3) not restricted to microglia; and 4) not upregulated in ex vivo activated human primary microglia. Our data are in line with recent reports showing that TSPO expression is not increased in schizophrenia and that it is not a specific marker for activated microglia. This study emphasizes the need for further development of tracers to study the role of microglial activation in schizophrenia and other diseases.


Assuntos
Encéfalo/metabolismo , Inflamação/metabolismo , Microglia/metabolismo , Esquizofrenia/metabolismo , Idoso , Idoso de 80 Anos ou mais , Autopsia , Biomarcadores/metabolismo , Feminino , Humanos , Inflamação/imunologia , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Receptores de GABA , Esquizofrenia/imunologia , Bancos de Tecidos
9.
Transl Psychiatry ; 9(1): 153, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-31127084

RESUMO

Genetic, epidemiological, and biomarker studies suggest that the immune system is involved in the pathogenesis of bipolar disorder (BD). It has therefore been hypothesized that immune activation of microglia, the resident immune cells of the brain, is associated with the disease. Only a few studies have addressed the involvement of microglia in BD so far and a more detailed immune profiling of microglial activation is lacking. Here, we applied a multi-level approach to determine the activation state of microglia in BD post-mortem brain tissue. We did not find differences in microglial density, and mRNA expression of microglial markers in the medial frontal gyrus (MFG) of patients with BD. Furthermore, we performed in-depth characterization of human primary microglia isolated from fresh brain tissue of the MFG, superior temporal gyrus (STG), and thalamus (THA). Similarly, these ex vivo isolated microglia did not show elevated expression of inflammatory markers. Finally, challenging the isolated microglia with LPS did not result in an increased immune response in patients with BD compared to controls. In conclusion, our study shows that microglia in post-mortem brain tissue of patients with BD are not immune activated.


Assuntos
Transtorno Bipolar/imunologia , Córtex Cerebral/imunologia , Microglia/imunologia , Tálamo/imunologia , Idoso , Idoso de 80 Anos ou mais , Autopsia , Biomarcadores/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
10.
Nat Neurosci ; 22(1): 78-90, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30559476

RESUMO

Microglia, the specialized innate immune cells of the CNS, play crucial roles in neural development and function. Different phenotypes and functions have been ascribed to rodent microglia, but little is known about human microglia (huMG) heterogeneity. Difficulties in procuring huMG and their susceptibility to cryopreservation damage have limited large-scale studies. Here we applied multiplexed mass cytometry for a comprehensive characterization of postmortem huMG (103 - 104 cells). We determined expression levels of 57 markers on huMG isolated from up to five different brain regions of nine donors. We identified the phenotypic signature of huMG, which was distinct from peripheral myeloid cells but was comparable to fresh huMG. We detected microglia regional heterogeneity using a hybrid workflow combining Cytobank and R/Bioconductor for multidimensional data analysis. Together, these methodologies allowed us to perform high-dimensional, large-scale immunophenotyping of huMG at the single-cell level, which facilitates their unambiguous profiling in health and disease.


Assuntos
Encéfalo/metabolismo , Microglia/metabolismo , Encéfalo/citologia , Feminino , Humanos , Imunofenotipagem , Lectinas Tipo C/metabolismo , Masculino , Receptor de Manose , Lectinas de Ligação a Manose/metabolismo , Microglia/citologia , Células Mieloides/citologia , Células Mieloides/metabolismo , Fenótipo , Receptores de Superfície Celular/metabolismo
11.
Nat Commun ; 9(1): 4167, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30301888

RESUMO

Cerebral organoids are 3D stem cell-derived models that can be utilized to study the human brain. The current consensus is that cerebral organoids consist of cells derived from the neuroectodermal lineage. This limits their value and applicability, as mesodermal-derived microglia are important players in neural development and disease. Remarkably, here we show that microglia can innately develop within a cerebral organoid model and display their characteristic ramified morphology. The transcriptome and response to inflammatory stimulation of these organoid-grown microglia closely mimic the transcriptome and response of adult microglia acutely isolated from post mortem human brain tissue. In addition, organoid-grown microglia mediate phagocytosis and synaptic material is detected inside them. In all, our study characterizes a microglia-containing organoid model that represents a valuable tool for studying the interplay between microglia, macroglia, and neurons in human brain development and disease.


Assuntos
Cérebro/metabolismo , Microglia/metabolismo , Organoides/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Camadas Germinativas/citologia , Humanos , Imunidade , Masculino , Mesoderma/citologia , Microglia/citologia , Pessoa de Meia-Idade , Neurônios/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Transcriptoma/genética , Adulto Jovem
12.
J Psychiatr Res ; 95: 231-234, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28910708

RESUMO

Recent imaging studies have suggested that accelerated aging occurs in schizophrenia. However, the exact cause of these findings is still unclear. In this study we measured telomere length, a marker for cell senescence, in gray and white matter brain tissue from the medial frontal gyrus (MFG) and superior temporal gyrus (STG) of 9 patients with schizophrenia and 11 controls. No alterations in telomere length were found in MFG gray and white matter and in STG gray matter. A significant reduction in telomere length was observed in STG white matter of patients with schizophrenia as compared to controls (fold change of -0.42, U = 5, P = 0.008). Our results support previous findings that telomere length in gray matter is not affected, whereas they suggest that increased cell senescence may affect white matter temporal brain tissue.


Assuntos
Senilidade Prematura/metabolismo , Senescência Celular , Lobo Frontal/metabolismo , Substância Cinzenta/metabolismo , Esquizofrenia/metabolismo , Telômero/metabolismo , Lobo Temporal/metabolismo , Bancos de Tecidos , Substância Branca/metabolismo , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real
13.
J Cell Sci ; 127(Pt 20): 4368-80, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25128567

RESUMO

Glial fibrillary acidic protein (GFAP) is the main intermediate filament in astrocytes and is regulated by epigenetic mechanisms during development. We demonstrate that histone acetylation also controls GFAP expression in mature astrocytes. Inhibition of histone deacetylases (HDACs) with trichostatin A or sodium butyrate reduced GFAP expression in primary human astrocytes and astrocytoma cells. Because splicing occurs co-transcriptionally, we investigated whether histone acetylation changes the ratio between the canonical isoform GFAPα and the alternative GFAPδ splice variant. We observed that decreased transcription of GFAP enhanced alternative isoform expression, as HDAC inhibition increased the GFAPδ∶GFAPα ratio. Expression of GFAPδ was dependent on the presence and binding of splicing factors of the SR protein family. Inhibition of HDAC activity also resulted in aggregation of the GFAP network, reminiscent of our previous findings of a GFAPδ-induced network collapse. Taken together, our data demonstrate that HDAC inhibition results in changes in transcription, splicing and organization of GFAP. These data imply that a tight regulation of histone acetylation in astrocytes is essential, because dysregulation of gene expression causes the aggregation of GFAP, a hallmark of human diseases like Alexander's disease.


Assuntos
Doença de Alexander/metabolismo , Astrócitos/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Histona Desacetilases/metabolismo , Acetilação/efeitos dos fármacos , Doença de Alexander/genética , Processamento Alternativo/efeitos dos fármacos , Astrócitos/efeitos dos fármacos , Ácido Butírico/farmacologia , Linhagem Celular Tumoral , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Epigênese Genética , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/genética , Inibidores de Histona Desacetilases/farmacologia , Histonas/metabolismo , Humanos , Ácidos Hidroxâmicos/farmacologia , Agregados Proteicos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Multimerização Proteica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...