Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7009, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919320

RESUMO

Cerebral Cavernous Malformations (CCMs) are vascular malformations of the central nervous system which can lead to moderate to severe neurological phenotypes in patients. A majority of CCM lesions are driven by a cancer-like three-hit mutational mechanism, including a somatic, activating mutation in the oncogene PIK3CA, as well as biallelic loss-of-function mutations in a CCM gene. However, standard sequencing approaches often fail to yield a full complement of pathogenic mutations in many CCMs. We suggest this reality reflects the limited sensitivity to identify low-frequency variants and the presence of mutations undetectable with bulk short-read sequencing. Here we report a single-nucleus DNA-sequencing approach that leverages the underlying biology of CCMs to identify lesions with somatic loss-of-heterozygosity, a class of such hidden mutations. We identify an alternative genetic mechanism for CCM pathogenesis and establish a method that can be repurposed to investigate the genetic underpinning of other disorders with multiple somatic mutations.


Assuntos
Hemangioma Cavernoso do Sistema Nervoso Central , Humanos , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Hemangioma Cavernoso do Sistema Nervoso Central/patologia , Proteína KRIT1/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Reguladoras de Apoptose/genética , Mutação , Análise de Sequência de DNA
2.
Bioinformatics ; 39(8)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37624924

RESUMO

SUMMARY: Many existing software libraries for genomics require researchers to pick between competing considerations: the performance of compiled languages and the accessibility of interpreted languages. Go, a modern compiled language, provides an opportunity to address this conflict. We introduce Gonomics, an open-source collection of command line programs and bioinformatic libraries implemented in Go that unites readability and performance for genomic analyses. Gonomics contains packages to read, write, and manipulate a wide array of file formats (e.g. FASTA, FASTQ, BED, BEDPE, SAM, BAM, and VCF), and can convert and interface between these formats. Furthermore, our modular library structure provides a flexible platform for researchers developing their own software tools to address specific questions. These commands can be combined and incorporated into complex pipelines to meet the growing need for high-performance bioinformatic resources. AVAILABILITY AND IMPLEMENTATION: Gonomics is implemented in the Go programming language. Source code, installation instructions, and documentation are freely available at https://github.com/vertgenlab/gonomics.


Assuntos
Compreensão , Genômica , Biologia Computacional , Linguagens de Programação , Documentação
3.
Cell ; 185(24): 4587-4603.e23, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36423581

RESUMO

Searches for the genetic underpinnings of uniquely human traits have focused on human-specific divergence in conserved genomic regions, which reflects adaptive modifications of existing functional elements. However, the study of conserved regions excludes functional elements that descended from previously neutral regions. Here, we demonstrate that the fastest-evolved regions of the human genome, which we term "human ancestor quickly evolved regions" (HAQERs), rapidly diverged in an episodic burst of directional positive selection prior to the human-Neanderthal split, before transitioning to constraint within hominins. HAQERs are enriched for bivalent chromatin states, particularly in gastrointestinal and neurodevelopmental tissues, and genetic variants linked to neurodevelopmental disease. We developed a multiplex, single-cell in vivo enhancer assay to discover that rapid sequence divergence in HAQERs generated hominin-unique enhancers in the developing cerebral cortex. We propose that a lack of pleiotropic constraints and elevated mutation rates poised HAQERs for rapid adaptation and subsequent susceptibility to disease.


Assuntos
Hominidae , Homem de Neandertal , Animais , Humanos , Hominidae/genética , Sequências Reguladoras de Ácido Nucleico , Homem de Neandertal/genética , Genoma Humano , Genômica
5.
Circ Res ; 129(1): 195-215, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34166073

RESUMO

Cerebral cavernous malformations are acquired vascular anomalies that constitute a common cause of central nervous system hemorrhage and stroke. The past 2 decades have seen a remarkable increase in our understanding of the pathogenesis of this vascular disease. This new knowledge spans genetic causes of sporadic and familial forms of the disease, molecular signaling changes in vascular endothelial cells that underlie the disease, unexpectedly strong environmental effects on disease pathogenesis, and drivers of disease end points such as hemorrhage. These novel insights are the integrated product of human clinical studies, human genetic studies, studies in mouse and zebrafish genetic models, and basic molecular and cellular studies. This review addresses the genetic and molecular underpinnings of cerebral cavernous malformation disease, the mechanisms that lead to lesion hemorrhage, and emerging biomarkers and therapies for clinical treatment of cerebral cavernous malformation disease. It may also serve as an example for how focused basic and clinical investigation and emerging technologies can rapidly unravel a complex disease mechanism.


Assuntos
Veias Cerebrais/anormalidades , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Hemangioma Cavernoso do Sistema Nervoso Central/terapia , Mutação , Animais , Veias Cerebrais/metabolismo , Predisposição Genética para Doença , Hemangioma Cavernoso do Sistema Nervoso Central/metabolismo , Hemangioma Cavernoso do Sistema Nervoso Central/patologia , Humanos , Fenótipo , Transdução de Sinais
6.
Nature ; 594(7862): 271-276, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33910229

RESUMO

Vascular malformations are thought to be monogenic disorders that result in dysregulated growth of blood vessels. In the brain, cerebral cavernous malformations (CCMs) arise owing to inactivation of the endothelial CCM protein complex, which is required to dampen the activity of the kinase MEKK31-4. Environmental factors can explain differences in the natural history of CCMs between individuals5, but why single CCMs often exhibit sudden, rapid growth, culminating in strokes or seizures, is unknown. Here we show that growth of CCMs requires increased signalling through the phosphatidylinositol-3-kinase (PI3K)-mTOR pathway as well as loss of function of the CCM complex. We identify somatic gain-of-function mutations in PIK3CA and loss-of-function mutations in the CCM complex in the same cells in a majority of human CCMs. Using mouse models, we show that growth of CCMs requires both PI3K gain of function and CCM loss of function in endothelial cells, and that both CCM loss of function and increased expression of the transcription factor KLF4 (a downstream effector of MEKK3) augment mTOR signalling in endothelial cells. Consistent with these findings, the mTORC1 inhibitor rapamycin effectively blocks the formation of CCMs in mouse models. We establish a three-hit mechanism analogous to cancer, in which aggressive vascular malformations arise through the loss of vascular 'suppressor genes' that constrain vessel growth and gain of a vascular 'oncogene' that stimulates excess vessel growth. These findings suggest that aggressive CCMs could be treated using clinically approved mTORC1 inhibitors.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/genética , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Hemangioma Cavernoso do Sistema Nervoso Central/patologia , Mutação , Neoplasias/genética , Animais , Animais Recém-Nascidos , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Mutação com Ganho de Função , Hemangioma Cavernoso do Sistema Nervoso Central/irrigação sanguínea , Hemangioma Cavernoso do Sistema Nervoso Central/metabolismo , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/metabolismo , Mutação com Perda de Função , MAP Quinase Quinase Quinase 3/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Neoplasias/irrigação sanguínea , Neoplasias/patologia , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo
7.
Am J Hum Genet ; 105(5): 894-906, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31630786

RESUMO

Hereditary hemorrhagic telangiectasia (HHT) is a Mendelian disease characterized by vascular malformations (VMs) including visceral arteriovenous malformations and mucosal telangiectasia. HHT is caused by loss-of-function (LoF) mutations in one of three genes, ENG, ACVRL1, or SMAD4, and is inherited as an autosomal-dominant condition. Intriguingly, the constitutional mutation causing HHT is present throughout the body, yet the multiple VMs in individuals with HHT occur focally, rather than manifesting as a systemic vascular defect. This disconnect between genotype and phenotype suggests that a local event is necessary for the development of VMs. We investigated the hypothesis that local somatic mutations seed the formation HHT-related telangiectasia in a genetic two-hit mechanism. We identified low-frequency somatic mutations in 9/19 telangiectasia through the use of next-generation sequencing. We established phase for seven of nine samples, which confirms that the germline and somatic mutations in all seven samples exist in trans configuration; this is consistent with a genetic two-hit mechanism. These combined data suggest that bi-allelic loss of ENG or ACVRL1 may be a required event in the development of telangiectasia, and that rather than haploinsufficiency, VMs in HHT are caused by a Knudsonian two-hit mechanism.


Assuntos
Receptores de Activinas Tipo II/genética , Endoglina/genética , Mutação/genética , Proteína Smad4/genética , Telangiectasia Hemorrágica Hereditária/genética , Malformações Vasculares/genética , Idoso , Alelos , Malformações Arteriovenosas/genética , Feminino , Genótipo , Humanos , Perda de Heterozigosidade/genética , Masculino , Fenótipo
8.
Circ Res ; 123(10): 1143-1151, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30359189

RESUMO

RATIONALE: Vascular malformations arise in vessels throughout the entire body. Causative genetic mutations have been identified for many of these diseases; however, little is known about the mutant cell lineage within these malformations. OBJECTIVE: We utilize an inducible mouse model of cerebral cavernous malformations (CCMs) coupled with a multicolor fluorescent reporter to visualize the contribution of mutant endothelial cells (ECs) to the malformation. METHODS AND RESULTS: We combined a Ccm3 mouse model with the confetti fluorescent reporter to simultaneously delete Ccm3 and label the mutant EC with 1 of 4 possible colors. We acquired Z-series confocal images from serial brain sections and created 3-dimensional reconstructions of entire CCMs to visualize mutant ECs during CCM development. We observed a pronounced pattern of CCMs lined with mutant ECs labeled with a single confetti color (n=42). The close 3-dimensional distribution, as determined by the nearest neighbor analysis, of the clonally dominant ECs within the CCM was statistically different than the background confetti labeling of ECs in non-CCM control brain slices as well as a computer simulation ( P<0.001). Many of the small (<100 µm diameter) CCMs consisted, almost exclusively, of the clonally dominant mutant ECs labeled with the same confetti color, whereas the large (>100 µm diameter) CCMs contained both the clonally dominant mutant cells and wild-type ECs. We propose of model of CCM development in which an EC acquires a second somatic mutation, undergoes clonal expansion to initiate CCM formation, and then incorporates neighboring wild-type ECs to increase the size of the malformation. CONCLUSIONS: This is the first study to visualize, with single-cell resolution, the clonal expansion of mutant ECs within CCMs. The incorporation of wild-type ECs into the growing malformation presents another series of cellular events whose elucidation would enhance our understanding of CCMs and may provide novel therapeutic opportunities.


Assuntos
Evolução Clonal , Células Endoteliais/metabolismo , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Mutação , Animais , Proteínas Reguladoras de Apoptose , Células Endoteliais/patologia , Hemangioma Cavernoso do Sistema Nervoso Central/diagnóstico por imagem , Hemangioma Cavernoso do Sistema Nervoso Central/patologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...