Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 460: 132490, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37703728

RESUMO

Hydraulic fracturing for oil and gas extraction produces large volumes of wastewater, termed flowback and produced water (FPW), that are highly saline and contain a variety of organic and inorganic contaminants. In the present study, FPW samples from ten hydraulically fractured wells, across two geologic formations were collected at various timepoints. Samples were analyzed to determine spatial and temporal variation in their inorganic composition. Results indicate that FPW composition varied both between formations and within a single formation, with large compositional changes occurring over short distances. Temporally, all wells showed a time-dependent increase in inorganic elements, with total dissolved solids increasing by up to 200,000 mg/L over time, primarily due to elements associated with salinity (Cl, Na, Ca, Mg, K). Toxicological analysis of a subset of the FPW samples showed median lethal concentrations (LC50) of FPW to the aquatic invertebrate Daphnia magna were highly variable, with the LC50 values ranging from 1.16% to 13.7% FPW. Acute toxicity of FPW significantly correlated with salinity, indicating salinity is a primary driver of FPW toxicity, however organic components also contributed to toxicity. This study provides insight into spatiotemporal variability of FPW composition and illustrates the difficulty in predicting aquatic risk associated with FPW.


Assuntos
Fraturamento Hidráulico , Animais , Daphnia , Epicloroidrina , Dose Letal Mediana , Água
2.
Mar Pollut Bull ; 189: 114750, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36857994

RESUMO

Intertidal mussels are well adapted to withstand emersion from water during low tide, but they may be intermittently exposed to waterborne toxicants such as copper, which targets physiological processes including metabolism, ammonia excretion, and osmoregulation. To determine if copper exposure damages intertidal organisms' ability to tolerate tidal emersion, Mediterranean mussels (Mytilus galloprovincialis) were exposed to copper for 96 h followed by 6 h of emersion. Oxygen uptake increased after copper exposure which suggests that copper accumulation caused moderate stress in the mussels, but ammonia excretion and anaerobic metabolism were unaffected by mixed copper and emersion exposures. Shell composition analyses indicate that cycles of copper exposure and tidal emersion may affect bivalve shell growth, but copper deposition into shells may decrease the metal's overall toxicity. Results suggest that copper does not damage M. galloprovincialis's tolerance to tidal emersion, and insight is provided into the mussel's ability to overcome mixed stressor exposures.


Assuntos
Mytilus , Animais , Mytilus/metabolismo , Cobre/toxicidade , Cobre/metabolismo , Amônia/metabolismo , Água , Adaptação Fisiológica
3.
Environ Sci Technol ; 57(6): 2380-2392, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36724135

RESUMO

Hydraulic fracturing extracts oil and gas through the injection of water and proppants into subterranean formations. These injected fluids mix with the host rock formation and return to the surface as a complex wastewater containing salts, metals, and organic compounds, termed flowback and produced water (FPW). Previous research indicates that FPW is toxic to Daphnia magna (D. magna), impairing reproduction, molting, and maturation time; however, recovery from FPW has not been extensively studied. Species unable to recover have drastic impacts on populations on the ecological scale; thus, this study sought to understand if recovery from an acute 48 h FPW exposure was possible in the freshwater invertebrate, D. magna by using a combination of physiological and molecular analyses. FPW (0.75%) reduced reproduction by 30% and survivorship to 32% compared to controls. System-level quantitative proteomic analyses demonstrate extensive perturbation of metabolism and protein transport in both 0.25 and 0.75% FPW treatments after a 48 h FPW exposure. Collectively, our data indicate that D. magna are unable to recover from acute 48 h exposures to ≥0.25% FPW, as evidence of toxicity persists for at least 19 days post-exposure. This study highlights the importance of considering persisting effects following FPW remediation when modeling potential spill scenarios.


Assuntos
Fraturamento Hidráulico , Poluentes Químicos da Água , Animais , Daphnia/fisiologia , Proteômica , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Água
4.
Environ Pollut ; 310: 119886, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35934150

RESUMO

During hydraulic fracturing, wastewaters - termed flowback and produced water (FPW) - are created as a by-product during hydrocarbon extraction. Given the large volumes of FPW that a single well can produce, and the history of FPW release to surface water bodies, it is imperative to understand the hazards that hydraulic fracturing and FPW pose to aquatic biota. Using rainbow trout embryos as model organisms, we investigated impacts to cardio-respiratory system development and function following acute (48 h) and sub-chronic (28-day) FPW exposure by examining occurrences of developmental deformities, rates of embryonic respiration (MO2), and changes in expression of critical cardiac-specific genes. FPW-exposed embryos had significantly increased rates of pericardial edema, yolk-sac edema, and tail/trunk curvatures at hatch. Furthermore, when exposed at three days post-fertilization (dpf), acute 5% FPW exposures significantly increased embryonic MO2 through development until 15 dpf, where a switch to significantly reduced MO2 rates was subsequently recorded. A similar trend was observed during sub-chronic 1% FPW exposures. Interestingly, at certain specific developmental timepoints, previous salinity exposure seemed to affect embryonic MO2; a result not previously observed. Following acute FPW exposures, embryonic genes for cardiac development and function were significantly altered, although at termination of sub-chronic exposures, significant changes to these same genes were not found. Together, our evidence of induced developmental deformities, modified embryonic MO2, and altered cardiac transcript expression suggest that cardio-respiratory tissues are toxicologically targeted following FPW exposure in developing rainbow trout. These results may be helpful to regulatory bodies when developing hazard identification and risk management protocols concerning hydraulic fracturing activities.


Assuntos
Fraturamento Hidráulico , Oncorhynchus mykiss , Poluentes Químicos da Água , Animais , Coração , Águas Residuárias , Água
5.
J Hazard Mater ; 414: 125525, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33677315

RESUMO

Hydraulic fracturing creates large volumes of flowback and produced water (FPW). The waste is a complex mixture of organic and inorganic constituents. Although the acute toxicity of FPW to freshwater organisms has been studied, few have attempted to discern the interaction between organic and inorganic constituents within this matrix and its role in toxicity. In the present study, bioaccumulation assays (7-d uptake and 7-d elimination period) with FPW (1% dilution) were conducted with the freshwater oligochaete, Lumbriculus variegatus, to evaluate the toxicokinetics of inorganic elements. To evaluate the interacting role of organics, bioaccumulation of elements in unmodified FPW was compared to activated carbon treated FPW (AC-modified). Differences in uptake and elimination rates as well as elimination steady state concentrations between unmodified and AC-modified treatments indicated that the organics play an important role in the uptake and depuration of inorganic elements in FPW. These differences in toxicokinetics between treatments aligned with observed growth rates in the worms which were higher in the AC-modified treatment. Whether growth differences resulted from increased accumulation and changes in toxicokinetic rates of inorganics or caused by direct toxicity from the organic fraction of FPW itself is still unknown and requires further research.


Assuntos
Fraturamento Hidráulico , Oligoquetos , Poluentes Químicos da Água , Animais , Bioacumulação , Sedimentos Geológicos , Águas Residuárias , Água , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
6.
Environ Pollut ; 272: 116411, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33486299

RESUMO

Hydraulic fracturing has become widely used in recent years to access vast global unconventional sources of oil and gas. This process involves the injection of proprietary mixtures of water and chemicals to fracture shale formations and extract the hydrocarbons trapped within. These injection fluids, along with minerals, hydrocarbons, and saline waters present within the formations being drilled into, return to the surface as flowback and produced water (FPW). FPW is a highly complex mixture, containing metals, salts and clay, as well as many organic chemicals, including polycyclic aromatic hydrocarbons such as phenanthrene. The present study sought to determine the effects of temperature on the accumulation of phenanthrene in rainbow trout (Oncorhynchus mykiss). This model organism resides in rivers overlapping the Montney and Duvernay formations, both highly developed formations for hydraulic fracturing. Rainbow trout acclimated to temperatures of 4, 13 and 17 °C were exposed to either 5% or 20% FPW, as well as saline mixtures representing the exact ionic content of FPW to determine the accumulation of radiolabelled 14C phenanthrene within the gill, gut, liver and gallbladder. FPW exposure reduced the overall accumulation of phenanthrene in a manner most often similar to high salinity exposure, indicating that the high ionic strength of FPW is the primary factor affecting accumulation. Accumulation was different at the temperature extremes (4 and 17 °C), although no consistent relationship was observed between temperature and accumulation across the observed tissues. These results indicate that several physiological responses occur as a result of FPW exposure and water temperature change which dictate phenanthrene uptake, particularly in the gills. Temperature (and seasonality) alone cannot be used to model the potential accumulation of polycyclic aromatic hydrocarbons after FPW spills.


Assuntos
Fraturamento Hidráulico , Oncorhynchus mykiss , Fenantrenos , Poluentes Químicos da Água , Animais , Temperatura , Água , Poluentes Químicos da Água/análise
7.
Sci Total Environ ; 764: 144288, 2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33385645

RESUMO

In aquatic toxicology, methods that are chosen for exposures have profound consequences on experimental outcomes and thus can skew policy initiatives. For example, as compared to single-organism exposures, toxicity test results of group exposures may be impacted by confounding factors such as social interactions between animals or individual variation in accumulation rates. To test for differences in organismal response between group and individual toxicological exposures, we exposed Daphnia magna to copper and subsequently compared the toxicity (median lethal concentration or LC50) between groups and individuals. Results suggested that water chemistry had a larger effect on experimental outcomes than the number of animals exposed in the same tank. Methodological decisions with respect to replication type can affect toxicity tests, and LC50s calculated using different exposure types (such as group and individual exposures) may not be comparable.


Assuntos
Poluentes Químicos da Água , Animais , Cobre , Daphnia , Humanos , Dose Letal Mediana , Testes de Toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...