Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Today Bio ; 26: 101060, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38711934

RESUMO

Cardiovascular diseases are a main cause of death worldwide, leading to a growing demand for medical devices to treat this patient group. Central to the engineering of such devices is a good understanding of the biology and physics of cell-surface interactions. In existing blood-contacting devices, such as vascular grafts, the interaction between blood, cells, and material is one of the main limiting factors for their long-term durability. An improved understanding of the material's chemical- and physical properties as well as its structure all play a role in how endothelial cells interact with the material surface. This review provides an overview of how different surface structures influence endothelial cell responses and what is currently known about the underlying mechanisms that guide this behavior. The structures reviewed include decellularized matrices, electrospun fibers, pillars, pits, and grated surfaces.

2.
Phytochemistry ; 200: 113210, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35439526

RESUMO

Usnic acid is an antibiotic metabolite produced by a wide variety of lichenized fungal lineages. The enantiomers of usnic acid have been shown to display contrasting bioactivities, and hence it is important to determine their spatial distribution, amounts and enantiomeric ratios in lichens to understand their roles in nature and grasp their pharmaceutical potential. The overall aim of the study was to characterise the spatial distribution of the predominant usnic acid enantiomer in lichens by combining spatial imaging and chiral chromatography. Specifically, separation and quantification of usnic acid enantiomers in four common lichens in Iceland was performed using a validated chiral chromatographic method. Molecular dynamics simulation was carried out to rationalize the chiral separation mechanism. Spatial distribution of usnic acid in the lichen thallus cross-sections were analysed using Desorption Electrospray Ionization-Imaging Mass Spectrometry (DESI-IMS) and fluorescence microscopy. DESI-IMS confirmed usnic acid as a cortical compound, and revealed that usnic acid can be more concentrated around the algal vicinity. Fluorescence microscopy complemented DESI-IMS by providing more detailed distribution information. By combining results from spatial imaging and chiral separation, we were able to visualize the distribution of the predominant usnic acid enantiomer in lichen cross-sections: (+)-usnic acid in Cladonia arbuscula and Ramalina siliquosa, and (-)-usnic acid in Alectoria ochroleuca and Flavocetraria nivalis. This study provides an analytical foundation for future environmental and functional studies of usnic acid enantiomers in lichens.


Assuntos
Benzofuranos , Líquens , Antibacterianos/metabolismo , Benzofuranos/química , Islândia , Líquens/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...