Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
Antimicrob Agents Chemother ; 68(5): e0028024, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38587391

RESUMO

Testing Plasmodium vivax antimicrobial sensitivity is limited to ex vivo schizont maturation assays, which preclude determining the IC50s of delayed action antimalarials such as doxycycline. Using Plasmodium cynomolgi as a model for P. vivax, we determined the physiologically significant delayed death effect induced by doxycycline [IC50(96 h), 1,401 ± 607 nM]. As expected, IC50(96 h) to chloroquine (20.4 nM), piperaquine (12.6 µM), and tafenoquine (1,424 nM) were not affected by extended exposure.


Assuntos
Aminoquinolinas , Antimaláricos , Doxiciclina , Piperazinas , Plasmodium cynomolgi , Plasmodium vivax , Doxiciclina/farmacologia , Antimaláricos/farmacologia , Aminoquinolinas/farmacologia , Plasmodium vivax/efeitos dos fármacos , Plasmodium cynomolgi/efeitos dos fármacos , Cloroquina/farmacologia , Animais , Malária Vivax/tratamento farmacológico , Malária Vivax/parasitologia , Quinolinas/farmacologia , Concentração Inibidora 50 , Humanos , Testes de Sensibilidade Parasitária
2.
Int J Antimicrob Agents ; 63(5): 107112, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38367843

RESUMO

The control and elimination of malaria caused by Plasmodium vivax is hampered by the threat of relapsed infection resulting from the activation of dormant hepatic hypnozoites. Currently, only the 8-aminoquinolines, primaquine and tafenoquine, have been approved for the elimination of hypnozoites, although their use is hampered by potential toxicity. Therefore, an alternative radical curative drug that safely eliminates hypnozoites is a pressing need. This study assessed the potential hypnozoiticidal activity of the antibiotic azithromycin, which is thought to exert antimalarial activity by inhibiting prokaryote-like ribosomal translation within the apicoplast, an indispensable organelle. The results show that azithromycin inhibited apicoplast development during liver-stage schizogony in P. vivax and Plasmodium cynomolgi, leading to impaired parasite maturation. More importantly, this study found that azithromycin is likely to impair the hypnozoite's apicoplast, resulting in the loss of this organelle. Subsequently, using a recently developed long-term hepatocyte culture system, this study found that this loss likely induces a delay in the hypnozoite activation rate, and that those parasites that do proceed to schizogony display liver-stage arrest prior to differentiating into hepatic merozoites, thus potentially preventing relapse. Overall, this work provides evidence for the potential use of azithromycin for the radical cure of relapsing malaria, and identifies apicoplast functions as potential drug targets in quiescent hypnozoites.


Assuntos
Antimaláricos , Apicoplastos , Azitromicina , Fígado , Plasmodium cynomolgi , Plasmodium vivax , Azitromicina/farmacologia , Plasmodium vivax/efeitos dos fármacos , Plasmodium cynomolgi/efeitos dos fármacos , Antimaláricos/farmacologia , Fígado/parasitologia , Fígado/efeitos dos fármacos , Apicoplastos/efeitos dos fármacos , Animais , Hepatócitos/parasitologia , Hepatócitos/efeitos dos fármacos , Humanos , Biogênese de Organelas , Malária Vivax/parasitologia , Malária Vivax/tratamento farmacológico , Camundongos , Malária/parasitologia , Malária/tratamento farmacológico
4.
Trends Parasitol ; 40(1): 21-27, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040603

RESUMO

Plasmodium ovale was the last of the exclusively human malaria parasites to be described, in 1922, and has remained the least well studied. Beginning in 1995, two divergent forms of the parasite, later termed 'classic' and 'variant', were described. By 2010, it was realised that these forms are two closely related, but genetically distinct and non-recombining species; they were given the names Plasmodium ovale curtisi and Plasmodium ovale wallikeri. Since then, substantial additional data have confirmed that the two parasites are indeed separate species, but the trinomial nomenclature has often led to confusion about their status, with many authors describing them as subspecies. We hereby formally name them Plasmodium ovalecurtisi and Plasmodium ovalewallikeri.


Assuntos
Malária , Parasitos , Plasmodium ovale , Animais , Humanos , Plasmodium ovale/genética , Malária/parasitologia
5.
Trends Parasitol ; 39(2): 113-125, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36517330

RESUMO

Plasmodium malariae is a 'neglected malaria parasite' in as much as the amount of research conducted on it pales into insignificance when compared to that pertaining to Plasmodium falciparum and Plasmodium vivax, its more notorious and pathogenic cousins. There has, however, been an increase in interest in this parasite over the past decade. Principally, this is because of the increasing use of sensitive molecular detection techniques that have revealed a wider than previously recorded prevalence in some regions (particularly in Africa), and high numbers of chronic, asymptomatic infections.


Assuntos
Malária , Parasitos , Animais , Humanos , Malária/epidemiologia , Malária/parasitologia , Plasmodium malariae/genética , Plasmodium falciparum , Plasmodium vivax
6.
J Infect Dis ; 227(10): 1121-1126, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-36478252

RESUMO

The lack of a long-term in vitro culture method has severely restricted the study of Plasmodium vivax, in part because it limits genetic manipulation and reverse genetics. We used the recently optimized Plasmodium cynomolgi Berok in vitro culture model to investigate the putative P. vivax drug resistance marker MDR1 Y976F. Introduction of this mutation using clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9 (CRISPR-Cas9) increased sensitivity to mefloquine, but had no significant effect on sensitivity to chloroquine, amodiaquine, piperaquine, and artesunate. To our knowledge, this is the first reported use of CRISPR-Cas9 in P. cynomolgi, and the first reported integrative genetic manipulation of this species.


Assuntos
Antimaláricos , Plasmodium cynomolgi , Mefloquina/farmacologia , Antimaláricos/farmacologia , Cloroquina/farmacologia , Plasmodium vivax/genética , Resistência a Medicamentos/genética , Resistência a Múltiplos Medicamentos/genética , Plasmodium falciparum
7.
PLoS Negl Trop Dis ; 16(8): e0010633, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35926062

RESUMO

BACKGROUND: Plasmodium vivax sporozoites reside in the salivary glands of a mosquito before infecting a human host and causing malaria. Previous transcriptome-wide studies in populations of these parasite forms were limited in their ability to elucidate cell-to-cell variation, thereby masking cellular states potentially important in understanding malaria transmission outcomes. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we performed transcription profiling on 9,947 P. vivax sporozoites to assess the extent to which they differ at single-cell resolution. We show that sporozoites residing in the mosquito's salivary glands exist in distinct developmental states, as defined by their transcriptomic signatures. Additionally, relative to P. falciparum, P. vivax displays overlapping and unique gene usage patterns, highlighting conserved and species-specific gene programs. Notably, distinguishing P. vivax from P. falciparum were a subset of P. vivax sporozoites expressing genes associated with translational regulation and repression. Finally, our comparison of single-cell transcriptomic data from P. vivax sporozoite and erythrocytic forms reveals gene usage patterns unique to sporozoites. CONCLUSIONS/SIGNIFICANCE: In defining the transcriptomic signatures of individual P. vivax sporozoites, our work provides new insights into the factors driving their developmental trajectory and lays the groundwork for a more comprehensive P. vivax cell atlas.


Assuntos
Anopheles , Malária Falciparum , Malária Vivax , Malária , Animais , Anopheles/genética , Anopheles/parasitologia , Humanos , Malária/parasitologia , Malária Vivax/parasitologia , Plasmodium vivax/genética , Análise de Sequência de RNA , Esporozoítos/genética , Transcriptoma
8.
Parasitol Int ; 89: 102589, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35470066

RESUMO

The absence of a routine continuous in vitro cultivation method for Plasmodium vivax, an important globally distributed parasite species causing malaria in humans, has restricted investigations to field and clinical sampling. Such a method has recently been developed for the Berok strain of P. cynomolgi, a parasite of macaques that has long been used as a model for P. vivax, as these two parasites are nearly indistinguishable biologically and are genetically closely related. The availability of the P. cynomolgi Berok in routine continuous culture provides for the first time an opportunity to conduct a plethora of functional studies. However, the initial cultivation protocol proved unsuited for investigations requiring extended cultivation times, such as reverse genetics and drug resistance. Here we have addressed some of the critical obstacles to this, and we propose a set of modifications that help overcome them.


Assuntos
Malária Vivax , Malária , Parasitos , Plasmodium cynomolgi , Animais , Macaca/parasitologia , Malária/parasitologia , Malária Vivax/parasitologia , Plasmodium vivax
9.
Malar J ; 21(1): 2, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983529

RESUMO

BACKGROUND: Genotyping of the three Plasmodium falciparum polymorphic genes, msp1, msp2 and glurp, has been adopted as a standard strategy to distinguish recrudescence from new infection in drug efficacy clinical trials. However, the suitability of a particular gene is compromised in areas where its allelic variants distribution is significantly skewed, a phenomenon that might occur in isolated parasite populations or in areas of very low transmission. Moreover, observation of amplification bias has diminished the value of glurp as a marker. METHODS: The suitability of the polymorphic P. falciparum histidine-rich protein 2 (pfhrp2) gene was assessed to serve as an alternative marker using a PCR-sequencing or a PCR-RFLP protocol for genotyping of samples in drug efficacy clinical trials. The value of pfhrp2 was validated by side-by-side analyses of 5 admission-recrudescence sample pairs from Yemeni malaria patients. RESULTS: The outcome of the single pfhrp2 gene discrimination analysis has been found consistent with msp1, msp2 and glurp pool genotyping analysis for the differentiation of recrudescence from new infection. CONCLUSION: The findings suggest that under the appropriate circumstances, pfhrp2 can serve as an additional molecular marker for monitoring anti-malarials efficacy. However, its use is restricted to endemic areas where only a minority of P. falciparum parasites lack the pfhrp2 gene.


Assuntos
Antígenos de Protozoários/análise , Antimaláricos/efeitos adversos , Plasmodium falciparum/genética , Proteínas de Protozoários/análise , Marcadores Genéticos , Genótipo , Humanos , Malária Falciparum/prevenção & controle
10.
Life Sci Alliance ; 5(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34857648

RESUMO

Artemisinin-based combination therapies (ACT) are the frontline treatments against malaria worldwide. Recently the use of traditional infusions from Artemisia annua (from which artemisinin is obtained) or Artemisia afra (lacking artemisinin) has been controversially advocated. Such unregulated plant-based remedies are strongly discouraged as they might constitute sub-optimal therapies and promote drug resistance. Here, we conducted the first comparative study of the anti-malarial effects of both plant infusions in vitro against the asexual erythrocytic stages of Plasmodium falciparum and the pre-erythrocytic (i.e., liver) stages of various Plasmodium species. Low concentrations of either infusion accounted for significant inhibitory activities across every parasite species and stage studied. We show that these antiplasmodial effects were essentially artemisinin-independent and were additionally monitored by observations of the parasite apicoplast and mitochondrion. In particular, the infusions significantly incapacitated sporozoites, and for Plasmodium vivax and P. cynomolgi, disrupted the hypnozoites. This provides the first indication that compounds other than 8-aminoquinolines could be effective antimalarials against relapsing parasites. These observations advocate for further screening to uncover urgently needed novel antimalarial lead compounds.


Assuntos
Antimaláricos/farmacologia , Artemisia/química , Artemisininas/farmacologia , Extratos Vegetais/farmacologia , Plasmodium/efeitos dos fármacos , Antimaláricos/química , Artemisininas/química , Eritrócitos/efeitos dos fármacos , Eritrócitos/parasitologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/parasitologia , Humanos , Estágios do Ciclo de Vida/efeitos dos fármacos , Malária/tratamento farmacológico , Malária/parasitologia , Testes de Sensibilidade Parasitária , Extratos Vegetais/química , Plasmodium/crescimento & desenvolvimento
11.
Microbiol Spectr ; 9(2): e0027421, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34724729

RESUMO

Human malaria infection begins with a one-time asymptomatic liver stage followed by a cyclic symptomatic blood stage. For decades, the research for novel antimalarials focused on the high-throughput screening of molecules that only targeted the asexual blood stages. In a search for new effective compounds presenting a triple action against erythrocytic and liver stages in addition to the ability to block the transmission of the disease via the mosquito vector, 2-amino-thienopyrimidinone derivatives were synthesized and tested for their antimalarial activity. One molecule, named gamhepathiopine (denoted as "M1" herein), was active at submicromolar concentrations against both erythrocytic (50% effective concentration [EC50] = 0.045 µM) and liver (EC50 = 0.45 µM) forms of Plasmodium falciparum. Furthermore, gamhepathiopine efficiently blocked the development of the sporogonic cycle in the mosquito vector by inhibiting the exflagellation step. Moreover, M1 was active against artemisinin-resistant forms (EC50 = 0.227 µM), especially at the quiescent stage. Nevertheless, in mice, M1 showed modest activity due to its rapid metabolization by P450 cytochromes into inactive derivatives, calling for the development of new parent compounds with improved metabolic stability and longer half-lives. These results highlight the thienopyrimidinone scaffold as a novel antiplasmodial chemotype of great interest to search for new drug candidates displaying multistage activity and an original mechanism of action with the potential to be used in combination therapies for malaria elimination in the context of artemisinin resistance. IMPORTANCE This work reports a new chemical structure that (i) displays activity against the human malaria parasite Plasmodium falciparum at 3 stages of the parasitic cycle (blood stage, hepatic stage, and sexual stages), (ii) remains active against parasites that are resistant to the first-line treatment recommended by the World Health Organization (WHO) for the treatment of severe malaria (artemisinins), and (iii) reduces transmission of the parasite to the mosquito vector in a mouse model. This new molecule family could open the way to the conception of novel antimalarial drugs with an original multistage mechanism of action to fight against Plasmodium drug resistance and block interhuman transmission of malaria.


Assuntos
Antimaláricos/farmacologia , Malária Falciparum/tratamento farmacológico , Plasmodium cynomolgi/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Plasmodium yoelii/efeitos dos fármacos , Pirimidinonas/farmacologia , Animais , Antimaláricos/química , Artemisininas/farmacologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Cães , Resistência a Medicamentos/fisiologia , Feminino , Células Hep G2 , Humanos , Fígado/parasitologia , Macaca fascicularis , Células Madin Darby de Rim Canino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pirimidinonas/química
12.
Nat Microbiol ; 6(8): 991-999, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34294905

RESUMO

More than one-third of the world's population is exposed to Plasmodium vivax malaria, mainly in Asia1. P. vivax preferentially invades reticulocytes (immature red blood cells)2-4. Previous work has identified 11 parasite proteins involved in reticulocyte invasion, including erythrocyte binding protein 2 (ref. 5) and the reticulocyte-binding proteins (PvRBPs)6-10. PvRBP2b binds to the transferrin receptor CD71 (ref. 11), which is selectively expressed on immature reticulocytes12. Here, we identified CD98 heavy chain (CD98), a heteromeric amino acid transporter from the SLC3 family (also known as SLCA2), as a reticulocyte-specific receptor for the PvRBP2a parasite ligand using mass spectrometry, flow cytometry, biochemical and parasite invasion assays. We characterized the expression level of CD98 at the surface of immature reticulocytes (CD71+) and identified an interaction between CD98 and PvRBP2a expressed at the merozoite surface. Our results identify CD98 as an additional host membrane protein, besides CD71, that is directly associated with P. vivax reticulocyte tropism. These findings highlight the potential of using PvRBP2a as a vaccine target against P. vivax malaria.


Assuntos
Eritrócitos/parasitologia , Cadeia Pesada da Proteína-1 Reguladora de Fusão/metabolismo , Malária Vivax/metabolismo , Plasmodium vivax/metabolismo , Antígenos CD , Antígenos de Protozoários/genética , Antígenos de Protozoários/metabolismo , Eritrócitos/metabolismo , Cadeia Pesada da Proteína-1 Reguladora de Fusão/genética , Interações Hospedeiro-Parasita , Humanos , Malária Vivax/sangue , Malária Vivax/genética , Plasmodium vivax/genética , Ligação Proteica , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Receptores da Transferrina , Reticulócitos/metabolismo , Reticulócitos/parasitologia
13.
PLoS Med ; 18(4): e1003591, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33901169

RESUMO

Jean-Marc Chavatte and Georges Snounou discuss research involving controlled malaria infections.


Assuntos
Controle de Doenças Transmissíveis/estatística & dados numéricos , Malária/parasitologia , Humanos
14.
Artigo em Inglês | MEDLINE | ID: mdl-33077656

RESUMO

For a long while, 8-aminoquinoline compounds have been the only therapeutic agents against latent hepatic malaria parasites. These have poor activity against the blood-stage plasmodia causing acute malaria and must be used in conjunction with partner blood schizontocidal agents. We examined the impacts of one such agent, chloroquine, upon the activity of primaquine, an 8-aminoquinoline, against hepatic stages of Plasmodium cynomolgi, Plasmodium yoelii, Plasmodium berghei, and Plasmodium falciparum within several ex vivo systems-primary hepatocytes of Macaca fascicularis, primary human hepatocytes, and stably transformed human hepatocarcinoma cell line HepG2. Primaquine exposures to formed hepatic schizonts and hypnozoites of P. cynomolgi in primary simian hepatocytes exhibited similar 50% inhibitory concentration (IC50) values near 0.4 µM, whereas chloroquine in the same system exhibited no inhibitory activities. Combining chloroquine and primaquine in this system decreased the observed primaquine IC50 for all parasite forms in a chloroquine dose-dependent manner by an average of 18-fold. Chloroquine also decreased the primaquine IC50 against hepatic P. falciparum in primary human hepatocytes, P. berghei in simian primary hepatocytes, and P. yoelii in primary human hepatocytes. Chloroquine had no impact on primaquine IC50 against P. yoelii in HepG2 cells and, likewise, had no impact on the IC50 of atovaquone (hepatic schizontocide) against P. falciparum in human hepatocytes. We describe important sources of variability in the potentiation of primaquine activity by chloroquine in these systems. Chloroquine potentiated primaquine activity against hepatic forms of several plasmodia. We conclude that chloroquine specifically potentiated 8-aminoquinoline activities against active and dormant hepatic-stage plasmodia in normal primary hepatocytes but not in a hepatocarcinoma cell line.


Assuntos
Antimaláricos , Malária , Plasmodium , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Humanos , Malária/tratamento farmacológico , Primaquina/farmacologia , Primaquina/uso terapêutico
15.
Acta Trop ; 211: 105596, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32589995

RESUMO

Zoonotic cases of Plasmodium knowlesi account for most malaria cases in Malaysia, and humans infected with P. cynomolgi, another parasite of macaques have recently been reported in Sarawak. To date the epidemiology of malaria in its natural Macaca reservoir hosts remains little investigated. In this study we surveyed the prevalence of simian malaria in wild macaques of three states in Peninsular Malaysia, namely Pahang, Perak and Johor using blood samples from 103 wild macaques (collected by the Department of Wildlife and National Parks Peninsular Malaysia) subjected to microscopic examination and nested PCR targeting the Plasmodium small subunit ribosomal RNA gene. As expected, PCR analysis yielded significantly higher prevalence (64/103) as compared to microscopic examination (27/103). No relationship between the age and/or sex of the macaques with the parasitaemia and the Plasmodium species infecting the macaques could be identified. Wild macaques in Pahang had the highest prevalence of Plasmodium parasites (89.7%), followed by those of Perak (69.2%) and Johor (28.9%). Plasmodium inui and P. cynomolgi were the two most prevalent species infecting the macaques from all three states. Half of the macaques (33/64) harboured two or more Plasmodium species. These data provide a baseline survey, which should be extended by further longitudinal investigations that should be associated with studies on the bionomics of the anopheline vectors. This information will allow an accurate evaluation of the risk of zoonotic transmission to humans, and to elaborate effective strategies to control simian malaria.


Assuntos
Macaca/parasitologia , Malária/veterinária , Doenças dos Macacos/parasitologia , Animais , Humanos , Malária/epidemiologia , Malária/parasitologia , Malásia/epidemiologia , Doenças dos Macacos/epidemiologia , Reação em Cadeia da Polimerase
16.
Lancet Infect Dis ; 20(1): e20-e25, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31540841

RESUMO

Malaria drug trials conducted in endemic areas face a major challenge in their analysis because it is difficult to establish whether parasitaemia in blood samples collected after treatment indicate drug failure or a new infection acquired after treatment. It is therefore vital to reliably distinguish drug failures from new infections in order to obtain accurate estimates of drug failure rates. This distinction can be achieved for Plasmodium falciparum by comparing parasite genotypes obtained at the time of treatment (the baseline) and on the day of recurring parasitaemia. Such PCR correction is required to obtain accurate failure rates, even for new effective drugs. Despite the routine use of PCR correction in surveillance of drug resistance and in clinical drug trials, limitations inherent to the molecular genotyping methods have led some researchers to question the validity of current PCR correction strategies. Here we describe and discuss recent developments in these genotyping approaches, with a particular focus on method validation and limitations of the genotyping strategies. Our aim is to update scientists from public and private bodies who are working on the development, deployment, and surveillance of new malaria drugs. We aim to promote discussion around these issues and argue for the adoption of improved standardised PCR correction methodologies.


Assuntos
Antimaláricos/uso terapêutico , Ensaios Clínicos como Assunto , Técnicas de Genotipagem/métodos , Malária Falciparum/diagnóstico , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/isolamento & purificação , Reação em Cadeia da Polimerase/métodos , Genótipo , Humanos , Plasmodium falciparum/classificação , Plasmodium falciparum/genética , Recidiva , Resultado do Tratamento
17.
Am J Trop Med Hyg ; 101(6): 1402-1404, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31595863

RESUMO

Here are two cases of recurring ovale malaria in Sarawak, Malaysia, that are likely relapses that occurred 1-2 months after successful treatment of the initial imported falciparum malaria with artemisinin-based combined therapy. The patients have no history or recollection of previous malaria episodes. These cases add to the limited evidence on the relapsing nature of Plasmodium ovale, after a febrile episode. In regions where P. ovale is not known to be autochthonous, active follow-up of treated imported malaria patients is highly recommended following their return, particularly to areas nearing or having achieved elimination.


Assuntos
Doenças Transmissíveis Importadas/diagnóstico , Malária/diagnóstico , Viagem , Antimaláricos/uso terapêutico , Doenças Transmissíveis Importadas/parasitologia , Febre/parasitologia , Humanos , Malária/tratamento farmacológico , Malásia , Masculino , Pessoa de Meia-Idade , Plasmodium falciparum , Recidiva , Resultado do Tratamento
18.
Nat Commun ; 10(1): 3635, 2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31406175

RESUMO

The ability to culture pathogenic organisms substantially enhances the quest for fundamental knowledge and the development of vaccines and drugs. Thus, the elaboration of a protocol for the in vitro cultivation of the erythrocytic stages of Plasmodium falciparum revolutionized research on this important parasite. However, for P. vivax, the most widely distributed and difficult to treat malaria parasite, a strict preference for reticulocytes thwarts efforts to maintain it in vitro. Cultivation of P. cynomolgi, a macaque-infecting species phylogenetically close to P. vivax, was briefly reported in the early 1980s, but not pursued further. Here, we define the conditions under which P. cynomolgi can be adapted to long term in vitro culture to yield parasites that share many of the morphological and phenotypic features of P. vivax. We further validate the potential of this culture system for high-throughput screening to prime and accelerate anti-P. vivax drug discovery efforts.


Assuntos
Eritrócitos/parasitologia , Macaca/parasitologia , Malária/veterinária , Doenças dos Macacos/parasitologia , Plasmodium cynomolgi/crescimento & desenvolvimento , Animais , Anopheles/parasitologia , Malária/parasitologia , Malária/transmissão
19.
Methods Mol Biol ; 2013: 323-334, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31267509

RESUMO

This paper provides, rather than a systematic review on malaria eradication attempts in history, a personal perspective on the currents that shaped past control strategies and, more briefly, on the prospects of current strategies. This essay is intentionally opinionated.


Assuntos
Malária/prevenção & controle , Humanos
20.
PLoS One ; 14(6): e0217795, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31170213

RESUMO

Plasmodium ovale curtisi and Plasmodium ovale wallikeri are two sympatric human malaria species prevalent in Africa, Asia and Oceania. The reported prevalence of both P. ovale spp. was relatively low compared to other malaria species, but more sensitive molecular detection techniques have shown that asymptomatic low-density infections are more common than previously thought. Whole genome sequencing of both P. ovale spp. revealed genetic dissociation between P. ovale curtisi and P. ovale wallikeri suggesting a species barrier. In this study we further evaluate such a barrier by assessing polymorphisms in the genes of three vaccine candidate surface protein: circumsporozoite protein/ thrombospondin-related anonymous-related protein (ctrp), circumsporozoite surface protein (csp) and merozoite surface protein 1 (msp1). The complete coding sequence of ctrp and csp, and a partial fragment of msp1 were isolated from 25 P. ovale isolates and compared to previously reported reference sequences. A low level of nucleotide diversity (Pi = 0.02-0.10) was observed in all three genes. Various sizes of tandem repeats were observed in all ctrp, csp and msp1 genes. Both tandem repeat unit and nucleotide polymorphism in all three genes exhibited clear dimorphism between P. ovale curtisi and P. ovale wallikeri, supporting evidence of non-recombination between these two species.


Assuntos
Antígenos de Protozoários/genética , Genes de Protozoários , Plasmodium ovale/genética , Sequência de Aminoácidos , Antígenos de Protozoários/química , Sequência Conservada/genética , Nucleotídeos/genética , Filogenia , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Sequências de Repetição em Tandem/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...